Fabrication and characterization of transdermal delivery of ribociclib nanoemulgel in breast cancer treatment.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Hafiz A Makeen, Mohammed Albratty
{"title":"Fabrication and characterization of transdermal delivery of ribociclib nanoemulgel in breast cancer treatment.","authors":"Hafiz A Makeen, Mohammed Albratty","doi":"10.1080/09205063.2024.2346396","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study is to create a nanoemulgel formulation of Ribociclib (RIBO), a highly selective inhibitor of CDK4/6 through the utilization of spontaneous emulsification method. An experimental investigation was conducted to construct pseudo-ternary phase diagram for the most favourable formulation utilizing rice bran oil, which is known for its diverse anticancer properties. The formulation consisted of varying combination of the surfactant and as the co-surfactant (Tween 80 and Transcutol, respectively) referred to as Smix and the trials were optimized to get the desired outcome. The nanoemulsion (NE) formulations that were developed exhibited a droplet size of 179.39 nm, accompanied with a PDI of 0.211. According to the data released by Opt-RIBO-NE, it can be inferred that the Higuchi model had the most favourable fit among many kinetics models considered. The results indicate that the use of nanogel preparations for the topical delivery of RIBO in breast cancer therapy, specifically RIBO-NE-G, is viable. This is supported by the extended release of the RIBO, and the appropriate level of drug permeation observed in Opt-RIBO-NE-G. Due to RIBO and Rice Bran oil, RIBO-NE-G had greater antioxidant activity, indicating its effectiveness as antioxidants. The stability of the RIBO-NE-G was observed over a period of three months, indicating a favourable shelf life. Therefore, this study proposes the utilization of an optimized formulation of RIBO-NE-G may enhance the efficacy of anticancer treatment and mitigate the occurrence of systemic side effects in breast cancer patients, as compared to the use of suspension preparation of RIBO.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1656-1683"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2346396","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this study is to create a nanoemulgel formulation of Ribociclib (RIBO), a highly selective inhibitor of CDK4/6 through the utilization of spontaneous emulsification method. An experimental investigation was conducted to construct pseudo-ternary phase diagram for the most favourable formulation utilizing rice bran oil, which is known for its diverse anticancer properties. The formulation consisted of varying combination of the surfactant and as the co-surfactant (Tween 80 and Transcutol, respectively) referred to as Smix and the trials were optimized to get the desired outcome. The nanoemulsion (NE) formulations that were developed exhibited a droplet size of 179.39 nm, accompanied with a PDI of 0.211. According to the data released by Opt-RIBO-NE, it can be inferred that the Higuchi model had the most favourable fit among many kinetics models considered. The results indicate that the use of nanogel preparations for the topical delivery of RIBO in breast cancer therapy, specifically RIBO-NE-G, is viable. This is supported by the extended release of the RIBO, and the appropriate level of drug permeation observed in Opt-RIBO-NE-G. Due to RIBO and Rice Bran oil, RIBO-NE-G had greater antioxidant activity, indicating its effectiveness as antioxidants. The stability of the RIBO-NE-G was observed over a period of three months, indicating a favourable shelf life. Therefore, this study proposes the utilization of an optimized formulation of RIBO-NE-G may enhance the efficacy of anticancer treatment and mitigate the occurrence of systemic side effects in breast cancer patients, as compared to the use of suspension preparation of RIBO.

在乳腺癌治疗中透皮给药 ribociclib 纳米凝胶的制备和表征。
本研究的目的是利用自发乳化法,制成 CDK4/6 的高选择性抑制剂 Ribociclib(RIBO)的纳米乳胶配方。实验研究利用米糠油构建了伪三相图,以确定最有利的配方,米糠油以其多种抗癌特性而闻名。该配方由不同的表面活性剂和辅助表面活性剂(分别为吐温 80 和 Transcutol)组合而成,被称为 Smix,通过优化试验获得了理想的结果。开发出的纳米乳液(NE)配方的液滴大小为 179.39 纳米,PDI 为 0.211。根据 Opt-RIBO-NE 公布的数据可以推断,在众多动力学模型中,樋口模型的拟合效果最好。结果表明,在乳腺癌治疗中使用纳米凝胶制剂局部给药 RIBO(特别是 RIBO-NE-G)是可行的。在 Opt-RIBO-NE-G 中观察到的 RIBO 的延长释放时间和适当的药物渗透水平证明了这一点。由于含有 RIBO 和米糠油,RIBO-NE-G 具有更强的抗氧化活性,这表明它具有抗氧化剂的功效。对 RIBO-NE-G 的稳定性进行了为期三个月的观察,表明其具有良好的保质期。因此,本研究建议,与使用 RIBO 悬浮制剂相比,使用 RIBO-NE-G 的优化配方可提高乳腺癌患者的抗癌疗效,并减轻全身副作用的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信