Ame-miR-1-3p of bee venom reduced cell viability through the AZIN1/OAZ1-ODC1-polyamines pathway and enhanced the defense ability of honeybee (Apis mellifera L.)
Haifeng Liu, Xue Tian, Jie Wen, Jie Liu, Yunfei Huo, Kangqi Yuan, Jiazhong Guo, Xun Wang, Mingxian Yang, Anan Jiang, Quanquan Cao, Jun Jiang
{"title":"Ame-miR-1-3p of bee venom reduced cell viability through the AZIN1/OAZ1-ODC1-polyamines pathway and enhanced the defense ability of honeybee (Apis mellifera L.)","authors":"Haifeng Liu, Xue Tian, Jie Wen, Jie Liu, Yunfei Huo, Kangqi Yuan, Jiazhong Guo, Xun Wang, Mingxian Yang, Anan Jiang, Quanquan Cao, Jun Jiang","doi":"10.1111/imb.12899","DOIUrl":null,"url":null,"abstract":"<p>Bee venom serves as an essential defensive weapon for bees and also finds application as a medicinal drug. MicroRNAs (miRNAs) serve as critical regulators and have been demonstrated to perform a variety of biological functions. However, the presence of miRNAs in bee venom needs to be confirmed. Therefore, we conducted small RNA sequencing and identified 158 known miRNAs, 15 conserved miRNAs and 4 novel miRNAs. It is noteworthy that ame-miR-1-3p, the most abundant among them, accounted for over a quarter of all miRNA reads. To validate the function of ame-miR-1-3p, we screened 28 candidate target genes using transcriptome sequencing and three target gene prediction software (miRanda, PITA and TargetScan) for ame-miR-1-3p. Subsequently, we employed real-time quantitative reverse transcription PCR (qRT-PCR), Western blot and other technologies to confirm that ame-miR-1-3p inhibits the relative expression of antizyme inhibitor 1 (AZIN1) by targeting the 3′ untranslated region (UTR) of AZIN1. This, in turn, caused ODC antizyme 1 (OAZ1) to bind to ornithine decarboxylase 1 (ODC1) and mark ODC1 for proteolytic destruction. The reduction in functional ODC1 ultimately resulted in a decrease in polyamine biosynthesis. Furthermore, we determined that ame-miR-1-3p accelerates cell death through the AZIN1/OAZ1-ODC1-polyamines pathway. Our studies demonstrate that ame-miR-1-3p diminishes cell viability and it may collaborate with sPLA2 to enhance the defence capabilities of honeybees (<i>Apis mellifera</i> L.). Collectively, these data further elucidate the defence mechanism of bee venom and expand the potential applications of bee venom in medical treatment.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imb.12899","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bee venom serves as an essential defensive weapon for bees and also finds application as a medicinal drug. MicroRNAs (miRNAs) serve as critical regulators and have been demonstrated to perform a variety of biological functions. However, the presence of miRNAs in bee venom needs to be confirmed. Therefore, we conducted small RNA sequencing and identified 158 known miRNAs, 15 conserved miRNAs and 4 novel miRNAs. It is noteworthy that ame-miR-1-3p, the most abundant among them, accounted for over a quarter of all miRNA reads. To validate the function of ame-miR-1-3p, we screened 28 candidate target genes using transcriptome sequencing and three target gene prediction software (miRanda, PITA and TargetScan) for ame-miR-1-3p. Subsequently, we employed real-time quantitative reverse transcription PCR (qRT-PCR), Western blot and other technologies to confirm that ame-miR-1-3p inhibits the relative expression of antizyme inhibitor 1 (AZIN1) by targeting the 3′ untranslated region (UTR) of AZIN1. This, in turn, caused ODC antizyme 1 (OAZ1) to bind to ornithine decarboxylase 1 (ODC1) and mark ODC1 for proteolytic destruction. The reduction in functional ODC1 ultimately resulted in a decrease in polyamine biosynthesis. Furthermore, we determined that ame-miR-1-3p accelerates cell death through the AZIN1/OAZ1-ODC1-polyamines pathway. Our studies demonstrate that ame-miR-1-3p diminishes cell viability and it may collaborate with sPLA2 to enhance the defence capabilities of honeybees (Apis mellifera L.). Collectively, these data further elucidate the defence mechanism of bee venom and expand the potential applications of bee venom in medical treatment.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).