Artificial Receptor in Synthetic Cells Performs Transmembrane Activation of Proteolysis.

IF 3.2 3区 生物学 Q3 MATERIALS SCIENCE, BIOMATERIALS
Ane Bretschneider Søgaard, Kaja Borup Løvschall, Mireia Casanovas Montasell, Clara Bakkegaard Cramer, Pere Monge Marcet, Andreas Bøtker Pedersen, Josefine Hammer Jakobsen, Alexander N Zelikin
{"title":"Artificial Receptor in Synthetic Cells Performs Transmembrane Activation of Proteolysis.","authors":"Ane Bretschneider Søgaard, Kaja Borup Løvschall, Mireia Casanovas Montasell, Clara Bakkegaard Cramer, Pere Monge Marcet, Andreas Bøtker Pedersen, Josefine Hammer Jakobsen, Alexander N Zelikin","doi":"10.1002/adbi.202400053","DOIUrl":null,"url":null,"abstract":"<p><p>The design of artificial, synthetic cells is a fundamentally important and fast-developing field of science. Of the diverse attributes of cellular life, artificial transmembrane signaling across the biomolecular barriers remains a high challenge with only a few documented successes. Herein, the study achieves signaling across lipid bilayers and connects an exofacial enzymatic receptor activation to an intracellular biochemical catalytic response using an artificial receptor. The mechanism of signal transduction for the artificial receptor relies on the triggered decomposition of a self-immolative linker. Receptor activation ensues its head-to-tail decomposition and the release of a secondary messenger molecule into the internal volume of the synthetic cell. Transmembrane signaling is demonstrated in synthetic cells based on liposomes and mammalian cell-sized giant unilamellar vesicles and illustrates receptor performance in cell mimics with a diverse size and composition of the lipid bilayer. In giant unilamellar vesicles, transmembrane signaling connects exofacial receptor activation with intracellular activation of proteolysis. Taken together, the results of this study take a step toward engineering receptor-mediated, responsive behavior in synthetic cells.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/adbi.202400053","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The design of artificial, synthetic cells is a fundamentally important and fast-developing field of science. Of the diverse attributes of cellular life, artificial transmembrane signaling across the biomolecular barriers remains a high challenge with only a few documented successes. Herein, the study achieves signaling across lipid bilayers and connects an exofacial enzymatic receptor activation to an intracellular biochemical catalytic response using an artificial receptor. The mechanism of signal transduction for the artificial receptor relies on the triggered decomposition of a self-immolative linker. Receptor activation ensues its head-to-tail decomposition and the release of a secondary messenger molecule into the internal volume of the synthetic cell. Transmembrane signaling is demonstrated in synthetic cells based on liposomes and mammalian cell-sized giant unilamellar vesicles and illustrates receptor performance in cell mimics with a diverse size and composition of the lipid bilayer. In giant unilamellar vesicles, transmembrane signaling connects exofacial receptor activation with intracellular activation of proteolysis. Taken together, the results of this study take a step toward engineering receptor-mediated, responsive behavior in synthetic cells.

合成细胞中的人工受体可执行跨膜激活蛋白水解。
人工合成细胞的设计是一个极其重要且发展迅速的科学领域。在细胞生命的各种属性中,跨越生物分子屏障的人工跨膜信号传导仍然是一项高难度挑战,仅有少数成功的文献记载。本研究利用人工受体实现了跨越脂质双层膜的信号传递,并将外表面酶受体激活与细胞内生化催化反应连接起来。人工受体的信号转导机制依赖于自惰性连接体的触发分解。受体激活后,其头对尾分解,并向合成细胞内部释放次级信使分子。在基于脂质体和哺乳动物细胞大小的巨型单拉米尔囊泡的合成细胞中演示了跨膜信号传导,并说明了受体在具有不同大小和组成的脂质双分子层的模拟细胞中的表现。在巨型单拉米尔囊泡中,跨膜信号将表面外的受体激活与细胞内的蛋白水解激活联系起来。综上所述,本研究的结果为在合成细胞中设计受体介导的反应行为迈出了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced biology
Advanced biology Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
6.60
自引率
0.00%
发文量
130
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信