Comparison of fatigue crack growth design curves on GMAW and EBW joints of high strength steels

IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
R. P. S. Sisodia, M. Gáspár, J. Lukács
{"title":"Comparison of fatigue crack growth design curves on GMAW and EBW joints of high strength steels","authors":"R. P. S. Sisodia,&nbsp;M. Gáspár,&nbsp;J. Lukács","doi":"10.1007/s40194-024-01787-5","DOIUrl":null,"url":null,"abstract":"<div><p>There is a growing demand in the industrial sector for the use of high-strength structural steels (HSSSs), which can achieve a significant weight reduction in structures. These structural steels are usually produced by quenching and tempering (Q + T) or thermomechanical treatment (TM), and their applications in welded structures pose several challenges for the users. In industrial practice, gas metal arc welding (GMAW) is basically the most commonly used fusion welding process, which has a relatively high heat input. However, at HSSSs, there is a need for low heat input but, at the same time, productive welding processes. High-energy density welding processes, e.g., electron beam welding (EBW), offer a unique opportunity to weld these steels. The widespread use of HSSSs is also hampered by the fact that the benefits of high strength can be exploited primarily under static loading. At the same time, different welded structures made of HSSSs are often subjected to cyclic loading, and possible weld defects and material discontinuities are major risks in this case. During our experiments, GMAW and autogenous EBW processes were applied to make welded joints from S960 Q + T and TM structural steels. The fatigue resistance of the welded joints was characterized by fatigue crack growth (FCG) tests, considering the increased crack sensitivity of HSSSs. A statistical approach was followed both in the design of the experiments and in the evaluation of their results. Based on the test results fatigue crack propagation design curves were determined for the investigated GMAW and EBW welded joints. The design curves were compared with each other, with design curves of lower strength material (S690QL) and with the recommended fatigue crack growth laws of BS 7910.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01787-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01787-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

There is a growing demand in the industrial sector for the use of high-strength structural steels (HSSSs), which can achieve a significant weight reduction in structures. These structural steels are usually produced by quenching and tempering (Q + T) or thermomechanical treatment (TM), and their applications in welded structures pose several challenges for the users. In industrial practice, gas metal arc welding (GMAW) is basically the most commonly used fusion welding process, which has a relatively high heat input. However, at HSSSs, there is a need for low heat input but, at the same time, productive welding processes. High-energy density welding processes, e.g., electron beam welding (EBW), offer a unique opportunity to weld these steels. The widespread use of HSSSs is also hampered by the fact that the benefits of high strength can be exploited primarily under static loading. At the same time, different welded structures made of HSSSs are often subjected to cyclic loading, and possible weld defects and material discontinuities are major risks in this case. During our experiments, GMAW and autogenous EBW processes were applied to make welded joints from S960 Q + T and TM structural steels. The fatigue resistance of the welded joints was characterized by fatigue crack growth (FCG) tests, considering the increased crack sensitivity of HSSSs. A statistical approach was followed both in the design of the experiments and in the evaluation of their results. Based on the test results fatigue crack propagation design curves were determined for the investigated GMAW and EBW welded joints. The design curves were compared with each other, with design curves of lower strength material (S690QL) and with the recommended fatigue crack growth laws of BS 7910.

Abstract Image

高强度钢 GMAW 和 EBW 接头疲劳裂纹增长设计曲线的比较
工业领域对使用高强度结构钢(HSSS)的需求日益增长,因为高强度结构钢可以显著减轻结构重量。这些结构钢通常是通过淬火和回火(Q + T)或热机械处理(TM)生产出来的,它们在焊接结构中的应用给用户带来了一些挑战。在工业实践中,气体金属弧焊(GMAW)基本上是最常用的熔焊工艺,其输入热量相对较高。然而,在高速钢系统中,需要输入热量低但同时产量高的焊接工艺。高能量密度焊接工艺,如电子束焊接(EBW),为焊接这些钢材提供了独特的机会。高强度钢的优点主要是在静态载荷下才能发挥出来,这也阻碍了高强度钢的广泛应用。同时,由 HSSS 焊接而成的不同结构通常要承受循环载荷,在这种情况下,可能出现的焊接缺陷和材料不连续性是主要风险。在实验过程中,我们采用了 GMAW 和自生 EBW 工艺来制造 S960 Q + T 和 TM 结构钢的焊接接头。考虑到高速钢的裂纹敏感性较高,我们通过疲劳裂纹增长(FCG)测试对焊接接头的耐疲劳性进行了鉴定。实验设计和结果评估都采用了统计方法。根据测试结果,确定了所研究的 GMAW 和 EBW 焊接接头的疲劳裂纹扩展设计曲线。将这些设计曲线与较低强度材料(S690QL)的设计曲线以及 BS 7910 推荐的疲劳裂纹增长规律进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Welding in the World
Welding in the World METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
4.20
自引率
14.30%
发文量
181
审稿时长
6-12 weeks
期刊介绍: The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信