High-yield β-alanine production from glucose and acetate in Escherichia coli

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Toan Minh Vo, Sunghoon Park
{"title":"High-yield β-alanine production from glucose and acetate in Escherichia coli","authors":"Toan Minh Vo, Sunghoon Park","doi":"10.1007/s12257-024-00107-4","DOIUrl":null,"url":null,"abstract":"<p><i>β</i>-Alanine is a versatile amino acid with wide-range industrial applications, but its production from glucose has been limited by a low yield. This study addresses this challenge by developing efficient <i>Escherichia coli</i> strains with modified carbon metabolism as microbial cell factories and implementing a two-stage fermentation strategy. The introduction of aspartate decarboxylase (PanD<sup>E56S/I88M</sup>) facilitates the conversion of aspartate to <i>β</i>-alanine, while the overexpression of key enzymes such as phosphoenolpyruvate carboxylase and aspartate dehydrogenase increases the carbon flow from phosphoenolpyruvate to aspartate. To mitigate oxidative stress, the glutathione cycle was enhanced by overexpressing BtuE and Gor. In a bioreactor, the optimized strain achieved <i>β</i>-alanine production of 71.7 g/L with a yield of 1.0 mol/mol glucose, reaching a peak of 1.29 mol/mol. Notably, the utilization of acetate as a carbon feedstock enabled the production of 50 g/L of <i>β</i>-alanine with a 0.33 mol/mol acetate yield, showcasing the potential for sustainable production. This research offers valuable insights into improving the carbon yield in <i>β</i>-alanine production, which is of great importance for industrial applications.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":"2012 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioprocess Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12257-024-00107-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

β-Alanine is a versatile amino acid with wide-range industrial applications, but its production from glucose has been limited by a low yield. This study addresses this challenge by developing efficient Escherichia coli strains with modified carbon metabolism as microbial cell factories and implementing a two-stage fermentation strategy. The introduction of aspartate decarboxylase (PanDE56S/I88M) facilitates the conversion of aspartate to β-alanine, while the overexpression of key enzymes such as phosphoenolpyruvate carboxylase and aspartate dehydrogenase increases the carbon flow from phosphoenolpyruvate to aspartate. To mitigate oxidative stress, the glutathione cycle was enhanced by overexpressing BtuE and Gor. In a bioreactor, the optimized strain achieved β-alanine production of 71.7 g/L with a yield of 1.0 mol/mol glucose, reaching a peak of 1.29 mol/mol. Notably, the utilization of acetate as a carbon feedstock enabled the production of 50 g/L of β-alanine with a 0.33 mol/mol acetate yield, showcasing the potential for sustainable production. This research offers valuable insights into improving the carbon yield in β-alanine production, which is of great importance for industrial applications.

Abstract Image

大肠杆菌利用葡萄糖和醋酸盐高产生产 β-丙氨酸
β-丙氨酸是一种用途广泛的氨基酸,具有广泛的工业用途,但其从葡萄糖中生产的产量一直很低。本研究通过开发具有改良碳代谢的高效大肠杆菌菌株作为微生物细胞工厂,并实施两阶段发酵策略来应对这一挑战。天门冬氨酸脱羧酶(PanDE56S/I88M)的引入促进了天门冬氨酸向β-丙氨酸的转化,而磷酸烯醇丙酮酸羧化酶和天门冬氨酸脱氢酶等关键酶的过表达则增加了从磷酸烯醇丙酮酸到天门冬氨酸的碳流。为了减轻氧化应激,通过过表达 BtuE 和 Gor 加强了谷胱甘肽循环。在生物反应器中,优化菌株的β-丙氨酸产量达到 71.7 克/升,葡萄糖产量为 1.0 摩尔/摩尔,峰值为 1.29 摩尔/摩尔。值得注意的是,利用醋酸盐作为碳原料,可生产出 50 克/升的β-丙氨酸,醋酸盐产量为 0.33 摩尔/摩尔,展示了可持续生产的潜力。这项研究为提高 β-丙氨酸生产中的碳产量提供了宝贵的见解,这对工业应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology and Bioprocess Engineering
Biotechnology and Bioprocess Engineering 工程技术-生物工程与应用微生物
CiteScore
5.00
自引率
12.50%
发文量
79
审稿时长
3 months
期刊介绍: Biotechnology and Bioprocess Engineering is an international bimonthly journal published by the Korean Society for Biotechnology and Bioengineering. BBE is devoted to the advancement in science and technology in the wide area of biotechnology, bioengineering, and (bio)medical engineering. This includes but is not limited to applied molecular and cell biology, engineered biocatalysis and biotransformation, metabolic engineering and systems biology, bioseparation and bioprocess engineering, cell culture technology, environmental and food biotechnology, pharmaceutics and biopharmaceutics, biomaterials engineering, nanobiotechnology, and biosensor and bioelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信