{"title":"Performance improvement of blue light micro-light emitting diodes (< 20 μm) by neutral beam etching process","authors":"Yu-Hsuan Hsu, Yun-Cheng Hsu, Chien-Chung Lin, Yi-Hsin Lin, Dong-Sing Wuu, Hao-Chung Kuo, Seiji Samukawa, Ray-Hua Horng","doi":"10.1016/j.mtadv.2024.100496","DOIUrl":null,"url":null,"abstract":"In this study, micro-light emitting diodes array (μLEDs) with dimensions of 5 μm and 15 μm chip size were fabricated using Neutral Beam Etching (NBE) processes. Size-dependent issues of μLEDs processed by traditional inductively coupled plasma-reactive ion etching (ICPRIE) were alleviated by NBE technology, which exhibited lower equivalent resistance, turn-on voltage, and Ideality factor as compared with those of μLEDs by ICPRIE. Additionally, higher light output power of μLEDs processed by NBE with both 5 μm and 15 μm resulted in higher EQE 7.6 % and 7.7 % than those of μLEDs processed by ICPRIE. Furthermore, the size effect led to a decrease in EQE values of the ICPRIE sample by 0.4 %, but only a 0.1 % decay in NBE. Overall, samples fabricated by the NBE process exhibited superior optoelectronic characteristics. Finally, non-radiative recombination behaviors on the mesa sidewall were verified by cathodoluminescence analysis, showing significant decay in ICPRIE samples but not in NBE samples. These results demonstrated the potential of the NBE process for fabricating small chip sizes blue-light μLEDs required for high-brightness, high-efficiency, and high-resolution μLED displays.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"238 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2024.100496","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, micro-light emitting diodes array (μLEDs) with dimensions of 5 μm and 15 μm chip size were fabricated using Neutral Beam Etching (NBE) processes. Size-dependent issues of μLEDs processed by traditional inductively coupled plasma-reactive ion etching (ICPRIE) were alleviated by NBE technology, which exhibited lower equivalent resistance, turn-on voltage, and Ideality factor as compared with those of μLEDs by ICPRIE. Additionally, higher light output power of μLEDs processed by NBE with both 5 μm and 15 μm resulted in higher EQE 7.6 % and 7.7 % than those of μLEDs processed by ICPRIE. Furthermore, the size effect led to a decrease in EQE values of the ICPRIE sample by 0.4 %, but only a 0.1 % decay in NBE. Overall, samples fabricated by the NBE process exhibited superior optoelectronic characteristics. Finally, non-radiative recombination behaviors on the mesa sidewall were verified by cathodoluminescence analysis, showing significant decay in ICPRIE samples but not in NBE samples. These results demonstrated the potential of the NBE process for fabricating small chip sizes blue-light μLEDs required for high-brightness, high-efficiency, and high-resolution μLED displays.
期刊介绍:
Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.