Three-dimensional fabric smoothness evaluation using point cloud data for enhanced quality control

IF 5.9 2区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhijie Yuan, Binjie Xin, Jing Zhang, Yingqi Xu
{"title":"Three-dimensional fabric smoothness evaluation using point cloud data for enhanced quality control","authors":"Zhijie Yuan, Binjie Xin, Jing Zhang, Yingqi Xu","doi":"10.1007/s10845-024-02367-6","DOIUrl":null,"url":null,"abstract":"<p>Assessing the smoothness appearance of fabrics, especially in three-dimensional forms, is vital for quality control. Existing methods often lack objectivity or fail to consider the full 3D structure of the fabric. In this study, we introduce an innovative system that harnesses point cloud data to overcome these limitations. We use a 3D scanning system to capture a multi-directional point cloud representation of the textile surface. The data undergoes stitching and filtering to obtain an optimized point cloud model for feature extraction. We propose the 3D and 2D alpha-shape area ratio as a novel feature parameter for determining surface smoothness. Validation was conducted with 730 point clouds from 146 fabric samples, achieving an impressive 95.81%, recognition accuracy, which aligns with expert subjective evaluations. This research not only presents a dependable method for 3D textile smoothness grading but also indicates its applicability in other industries where surface evaluation is pivotal.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"38 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02367-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Assessing the smoothness appearance of fabrics, especially in three-dimensional forms, is vital for quality control. Existing methods often lack objectivity or fail to consider the full 3D structure of the fabric. In this study, we introduce an innovative system that harnesses point cloud data to overcome these limitations. We use a 3D scanning system to capture a multi-directional point cloud representation of the textile surface. The data undergoes stitching and filtering to obtain an optimized point cloud model for feature extraction. We propose the 3D and 2D alpha-shape area ratio as a novel feature parameter for determining surface smoothness. Validation was conducted with 730 point clouds from 146 fabric samples, achieving an impressive 95.81%, recognition accuracy, which aligns with expert subjective evaluations. This research not only presents a dependable method for 3D textile smoothness grading but also indicates its applicability in other industries where surface evaluation is pivotal.

Abstract Image

利用点云数据进行三维织物平滑度评估,加强质量控制
评估织物(尤其是三维织物)的平滑外观对于质量控制至关重要。现有的方法往往缺乏客观性,或者没有考虑到织物的完整三维结构。在本研究中,我们介绍了一种利用点云数据克服这些局限性的创新系统。我们使用三维扫描系统捕捉纺织品表面的多方位点云表示。数据经过拼接和过滤后,就能获得用于特征提取的优化点云模型。我们提出将三维和二维阿尔法形状面积比作为确定表面平滑度的新特征参数。我们对来自 146 个织物样本的 730 个点云进行了验证,识别准确率达到了令人印象深刻的 95.81%,这与专家的主观评价相吻合。这项研究不仅提出了一种可靠的三维纺织品平滑度分级方法,还表明它适用于对表面评估至关重要的其他行业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent Manufacturing
Journal of Intelligent Manufacturing 工程技术-工程:制造
CiteScore
19.30
自引率
9.60%
发文量
171
审稿时长
5.2 months
期刊介绍: The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信