The symplectic structure of a toric conic transform

IF 1.6 3区 数学 Q1 MATHEMATICS
Roberto Paoletti
{"title":"The symplectic structure of a toric conic transform","authors":"Roberto Paoletti","doi":"10.1016/j.geomphys.2024.105224","DOIUrl":null,"url":null,"abstract":"<div><p>Suppose that a compact <em>r</em>-dimensional torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> acts in a holomorphic and Hamiltonian manner on polarized complex <em>d</em>-dimensional projective manifold <em>M</em>, with nowhere vanishing moment map Φ. Assuming that Φ is transverse to the ray through a given weight <strong><em>ν</em></strong>, associated to these data there is a complex <span><math><mo>(</mo><mi>d</mi><mo>−</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-dimensional polarized projective orbifold <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>ν</mi></mrow></msub></math></span> (referred to as the <strong><em>ν</em></strong>-th <em>conic transform</em> of <em>M</em>). Namely, <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>ν</mi></mrow></msub></math></span> is a suitable quotient of the inverse image of the ray in the unit circle bundle of the polarization of <em>M</em>. With the aim to clarify the geometric significance of this construction, we consider the special case where <em>M</em> is toric, and show that <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>ν</mi></mrow></msub></math></span> is itself a Kähler toric orbifold, whose (marked) moment polytope is obtained from the one of <em>M</em> by a certain ‘transform’ operation (depending on Φ and <strong><em>ν</em></strong>).</p></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0393044024001256/pdfft?md5=2490eed4f9927d9eca44f946eeae8ed2&pid=1-s2.0-S0393044024001256-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024001256","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that a compact r-dimensional torus Tr acts in a holomorphic and Hamiltonian manner on polarized complex d-dimensional projective manifold M, with nowhere vanishing moment map Φ. Assuming that Φ is transverse to the ray through a given weight ν, associated to these data there is a complex (dr+1)-dimensional polarized projective orbifold Mˆν (referred to as the ν-th conic transform of M). Namely, Mˆν is a suitable quotient of the inverse image of the ray in the unit circle bundle of the polarization of M. With the aim to clarify the geometric significance of this construction, we consider the special case where M is toric, and show that Mˆν is itself a Kähler toric orbifold, whose (marked) moment polytope is obtained from the one of M by a certain ‘transform’ operation (depending on Φ and ν).

环锥变换的交映结构
假设一个紧凑的-维环状体以全态和哈密顿方式作用于极化复-维投影流形 ,其无处消失的矩图 Φ。假定 Φ 是通过给定权重的射线的横向,与这些数据相关联的有一个复-维极化射影球面(称为)的-th。为了阐明这一构造的几何意义,我们考虑了是环状的特殊情况,并证明了它本身是一个 Kähler 环状轨道,其(标记的)矩多面体是通过一定的 "变换 "操作(取决于 Φ 和 )从 的矩多面体得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信