Bio-based aromatics for chemicals and materials: Advances in renewable drop-in and functional alternatives

IF 9.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sandra Wegelin , Michael A.R. Meier
{"title":"Bio-based aromatics for chemicals and materials: Advances in renewable drop-in and functional alternatives","authors":"Sandra Wegelin ,&nbsp;Michael A.R. Meier","doi":"10.1016/j.cogsc.2024.100931","DOIUrl":null,"url":null,"abstract":"<div><p>Benzene, toluene, and xylenes (BTX), as well as their downstream products, are a fundamental part of numerous processes in the chemical industry. However, by now, aromatics are still yielded from fossil resources like naphtha, coal, and natural gas. Thus, to push the chemical industry further toward renewability, the production of bio-based aromatics is an essential step to take. The implementation of bio-based aromatics to replace petrochemical aromatics can proceed in two main ways: as direct replacement <em>via</em> renewable drop-in or as replacement by renewable functional alternatives. However, the implementation of both pathways still requires significant process optimization toward large-scale application in industrial processes. In this work, renewable drop-in is mainly discussed in the context of pyrolysis and Diels–Alder reactions. Furthermore, renewable functional alternatives discussed here focus on furan derivatives and lignin-based building blocks.</p></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"47 ","pages":"Article 100931"},"PeriodicalIF":9.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245222362400052X/pdfft?md5=cec147d9b10bc8bc21d9e4ea1e4eacae&pid=1-s2.0-S245222362400052X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245222362400052X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Benzene, toluene, and xylenes (BTX), as well as their downstream products, are a fundamental part of numerous processes in the chemical industry. However, by now, aromatics are still yielded from fossil resources like naphtha, coal, and natural gas. Thus, to push the chemical industry further toward renewability, the production of bio-based aromatics is an essential step to take. The implementation of bio-based aromatics to replace petrochemical aromatics can proceed in two main ways: as direct replacement via renewable drop-in or as replacement by renewable functional alternatives. However, the implementation of both pathways still requires significant process optimization toward large-scale application in industrial processes. In this work, renewable drop-in is mainly discussed in the context of pyrolysis and Diels–Alder reactions. Furthermore, renewable functional alternatives discussed here focus on furan derivatives and lignin-based building blocks.

Abstract Image

Abstract Image

用于化学品和材料的生物基芳烃:可再生无须添加剂和功能性替代品方面的进展
苯、甲苯和二甲苯(BTX)及其下游产品是化学工业众多工艺的基本组成部分。然而,到目前为止,芳烃仍然是从石脑油、煤炭和天然气等化石资源中生产出来的。因此,要推动化工行业进一步实现可再生性,生产生物基芳烃是必不可少的一步。实施生物基芳烃替代石化芳烃主要有两种途径:直接替代可再生添加剂或替代可再生功能替代品。然而,这两种途径的实施仍然需要大量的工艺优化,以实现在工业过程中的大规模应用。在这项工作中,主要讨论了热解和 Diels-Alder 反应中的可再生添加物。此外,本文讨论的可再生功能替代品主要集中在呋喃衍生物和基于木质素的构建模块上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.00
自引率
2.20%
发文量
140
审稿时长
103 days
期刊介绍: The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信