Quantitative structure–activity relationship of 2,6-dimethoxy-N-(3-(4-substituted phenyl)isoxazol-5-yl)benzamide for the inhibition of chitin synthesis
{"title":"Quantitative structure–activity relationship of 2,6-dimethoxy-N-(3-(4-substituted phenyl)isoxazol-5-yl)benzamide for the inhibition of chitin synthesis","authors":"Kotaro Mori, Masahiro Miyashita, Soichirou Mori, Norio Shibata, Yoshiaki Nakagawa","doi":"10.1584/jpestics.d24-004","DOIUrl":null,"url":null,"abstract":"</p><p>Previously, we found that 5-(2,6-dimethoxybenzoylamino)-3-phenylisoxazoles (IOXs) inhibit chitin synthesis in the cultured integument of <i>Chilo suppressalis</i>. In this study, IOXs with various substituents at the <i>para</i>-position of the 3-phenyl ring were synthesized, and the concentrations required to inhibit chitin synthesis to 50% (IC<sub>50</sub>) were determined for all compounds. The introduction of halogens—such as F, Cl, and Br—and small alkyls—such as Me, Et, Pr, and <i>n</i>-Bu—at the 3-phenyl ring slightly enhanced the activity. However, the activity decreased drastically with the introduction of NO<sub>2</sub>, CF<sub>3</sub>, and <i>t</i>-Bu. The quantitative analysis of the substituent effect at the 3-phenyl ring on chitin-synthesis inhibition using the Hansch-Fujita method showed that the hydrophobic substituent with the optimum value was favored for the activity, but the bulky substituent in terms of <i>E</i><sub><i>s</i></sub> was detrimental to the activity.</p>\n<p></p>\n<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jpestics/advpub/0/advpub_D24-004/figure/advpub_D24-004.png\"/>\n<span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"33 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pesticide Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1584/jpestics.d24-004","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previously, we found that 5-(2,6-dimethoxybenzoylamino)-3-phenylisoxazoles (IOXs) inhibit chitin synthesis in the cultured integument of Chilo suppressalis. In this study, IOXs with various substituents at the para-position of the 3-phenyl ring were synthesized, and the concentrations required to inhibit chitin synthesis to 50% (IC50) were determined for all compounds. The introduction of halogens—such as F, Cl, and Br—and small alkyls—such as Me, Et, Pr, and n-Bu—at the 3-phenyl ring slightly enhanced the activity. However, the activity decreased drastically with the introduction of NO2, CF3, and t-Bu. The quantitative analysis of the substituent effect at the 3-phenyl ring on chitin-synthesis inhibition using the Hansch-Fujita method showed that the hydrophobic substituent with the optimum value was favored for the activity, but the bulky substituent in terms of Es was detrimental to the activity.
期刊介绍:
The Journal of Pesticide Science publishes the results of original research regarding the chemistry and biochemistry of pesticides including bio-based materials. It also covers their metabolism, toxicology, environmental fate and formulation.