V. N. Kolokoltsev, V. Ya. Nikulin, P. V. Silin, I. V. Borovitskaya, E. N. Peregudova, A. I. Gaidar, L. I. Kobeleva, A. M. Mezrin, A. A. Eriskin
{"title":"Deposition of Thin Refractory-Metal-Films onto Glasses through Diaphragms at Plasma Focus Facility","authors":"V. N. Kolokoltsev, V. Ya. Nikulin, P. V. Silin, I. V. Borovitskaya, E. N. Peregudova, A. I. Gaidar, L. I. Kobeleva, A. M. Mezrin, A. A. Eriskin","doi":"10.1134/S1063780X24600178","DOIUrl":null,"url":null,"abstract":"<p>The results of experiments are presented on the deposition onto silicate glasses of thin refractory-metal-films: molybdenum, tantalum and tungsten. The technique used for manufacturing films was based on the deposition of metal-containing plasma formed when exposing the surface of foils made of refractory metals to high-power plasma and ion pulses. For generation of such pulses, the facility of plasma focus type was used, which makes it possible to obtain ion beams and plasma flows with the energy flux density in the range of 10<sup>10</sup>–10<sup>12</sup> W/cm<sup>2</sup>. The most intense central part of the ion-plasma flow was separated using metal di-aphragms with aperture diameters of 2.5, 3.5, and 4.5 mm. Metal Mo, Ta and W films with dimensions of ∅3–5 mm were obtained on the surfaces of glasses. Metal films are characterized by good adhesion, since they coalesce with the glass surface. It was discovered that the planarity of films becomes violated due to the drift of molten metal particles under the glass surface. The relief of films is non-uniform, which can be explained by the presence of micrometer-sized metal particles in the plasma flow.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 3","pages":"342 - 349"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063780X24600178","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
The results of experiments are presented on the deposition onto silicate glasses of thin refractory-metal-films: molybdenum, tantalum and tungsten. The technique used for manufacturing films was based on the deposition of metal-containing plasma formed when exposing the surface of foils made of refractory metals to high-power plasma and ion pulses. For generation of such pulses, the facility of plasma focus type was used, which makes it possible to obtain ion beams and plasma flows with the energy flux density in the range of 1010–1012 W/cm2. The most intense central part of the ion-plasma flow was separated using metal di-aphragms with aperture diameters of 2.5, 3.5, and 4.5 mm. Metal Mo, Ta and W films with dimensions of ∅3–5 mm were obtained on the surfaces of glasses. Metal films are characterized by good adhesion, since they coalesce with the glass surface. It was discovered that the planarity of films becomes violated due to the drift of molten metal particles under the glass surface. The relief of films is non-uniform, which can be explained by the presence of micrometer-sized metal particles in the plasma flow.
期刊介绍:
Plasma Physics Reports is a peer reviewed journal devoted to plasma physics. The journal covers the following topics: high-temperature plasma physics related to the problem of controlled nuclear fusion based on magnetic and inertial confinement; physics of cosmic plasma, including magnetosphere plasma, sun and stellar plasma, etc.; gas discharge plasma and plasma generated by laser and particle beams. The journal also publishes papers on such related topics as plasma electronics, generation of radiation in plasma, and plasma diagnostics. As well as other original communications, the journal publishes topical reviews and conference proceedings.