On algebraic normalisers of maximal tori in simple groups of Lie type

Pub Date : 2024-05-16 DOI:10.1515/jgth-2023-0070
Anton A. Baykalov
{"title":"On algebraic normalisers of maximal tori in simple groups of Lie type","authors":"Anton A. Baykalov","doi":"10.1515/jgth-2023-0070","DOIUrl":null,"url":null,"abstract":"Let 𝐺 be a finite simple group of Lie type and let 𝑇 be a maximal torus of 𝐺. It is well known that if the defining field of 𝐺 is large enough, then the normaliser of 𝑇 in 𝐺 is equal to the algebraic normaliser <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>N</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0070_ineq_0001.png\"/> <jats:tex-math>N(G,T)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We identify explicitly all the cases when <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>N</m:mi> <m:mi>G</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0070_ineq_0002.png\"/> <jats:tex-math>N_{G}(T)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is not equal to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>N</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo>,</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0070_ineq_0001.png\"/> <jats:tex-math>N(G,T)</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let 𝐺 be a finite simple group of Lie type and let 𝑇 be a maximal torus of 𝐺. It is well known that if the defining field of 𝐺 is large enough, then the normaliser of 𝑇 in 𝐺 is equal to the algebraic normaliser N ( G , T ) N(G,T) . We identify explicitly all the cases when N G ( T ) N_{G}(T) is not equal to N ( G , T ) N(G,T) .
分享
查看原文
论李型简单群中最大环的代数归一化
设𝐺是一个有限李型简单群,设𝑇是𝐺的最大环。众所周知,如果𝐺 的定义域足够大,那么𝐺 中𝑇 的归一化等于代数归一化 N ( G , T ) N(G,T)。我们明确指出 N G ( T ) N_{G}(T) 不等于 N ( G , T ) N(G,T) 的所有情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信