Direct laser writing of MnOx decorated laser-induced graphene on paper for sustainable microsupercapacitor fabrication

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Rodrigo Abreu , Maykel dos Santos Klem , Tomás Pinheiro , Joana Vaz Pinto , Neri Alves , Rodrigo Martins , Emanuel Carlos , João Coelho
{"title":"Direct laser writing of MnOx decorated laser-induced graphene on paper for sustainable microsupercapacitor fabrication","authors":"Rodrigo Abreu ,&nbsp;Maykel dos Santos Klem ,&nbsp;Tomás Pinheiro ,&nbsp;Joana Vaz Pinto ,&nbsp;Neri Alves ,&nbsp;Rodrigo Martins ,&nbsp;Emanuel Carlos ,&nbsp;João Coelho","doi":"10.1016/j.flatc.2024.100672","DOIUrl":null,"url":null,"abstract":"<div><p>Laser-induced graphene (LIG) on paper is a popular choice for fabricating flexible micro-supercapacitors (MSCs) as it is a simple and sustainable process. However, carbon-based MSC electrodes have limited energy densities. To address this challenge, this study presents a highly reproducible and cost-effective method for decorating manganese oxide (MnO<sub>x</sub>) on interdigital LIG MSC electrodes, fabricated via a single-step direct laser writing (DLW) process on paper substrates. The paper fibers embedded with MnO<sub>x</sub> precursors are transformed into graphene through laser processing while reducing the salt, resulting in the formation of MnO<sub>x</sub>-LIG. The resulting MnO<sub>x</sub>-LIG-MSC exhibits a specific capacitance of 12.30 mF cm<sup>−2</sup> (0.05 mA cm<sup>−2</sup>) with a 60 % retention at 1000 bending cycles (30°), due to the pseudocapacitive contribution of MnO<sub>x</sub>. Furthermore, the devices exhibit high electrochemical stability, retaining 190 % of the initial specific capacitance after 10,000 cycles, and a high energy density of 2.6 μWh cm<sup>−2</sup> (at a power of 0.109 mW cm<sup>−2</sup>). The study demonstrates that manganese oxide-based LIG-MSCs have the potential to be used as energy storage devices for portable, low-cost, and flexible paper electronics.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"46 ","pages":"Article 100672"},"PeriodicalIF":5.9000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452262724000667/pdfft?md5=16cdfd673b7374620198963808407249&pid=1-s2.0-S2452262724000667-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724000667","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Laser-induced graphene (LIG) on paper is a popular choice for fabricating flexible micro-supercapacitors (MSCs) as it is a simple and sustainable process. However, carbon-based MSC electrodes have limited energy densities. To address this challenge, this study presents a highly reproducible and cost-effective method for decorating manganese oxide (MnOx) on interdigital LIG MSC electrodes, fabricated via a single-step direct laser writing (DLW) process on paper substrates. The paper fibers embedded with MnOx precursors are transformed into graphene through laser processing while reducing the salt, resulting in the formation of MnOx-LIG. The resulting MnOx-LIG-MSC exhibits a specific capacitance of 12.30 mF cm−2 (0.05 mA cm−2) with a 60 % retention at 1000 bending cycles (30°), due to the pseudocapacitive contribution of MnOx. Furthermore, the devices exhibit high electrochemical stability, retaining 190 % of the initial specific capacitance after 10,000 cycles, and a high energy density of 2.6 μWh cm−2 (at a power of 0.109 mW cm−2). The study demonstrates that manganese oxide-based LIG-MSCs have the potential to be used as energy storage devices for portable, low-cost, and flexible paper electronics.

Abstract Image

Abstract Image

在纸上直接激光写入氧化锰装饰的激光诱导石墨烯,实现可持续微型超级电容器制造
纸上激光诱导石墨烯(LIG)是制造柔性微型超级电容器(MSC)的热门选择,因为它是一种简单且可持续的工艺。然而,碳基 MSC 电极的能量密度有限。为了应对这一挑战,本研究提出了一种具有高度可重复性和成本效益的方法,用于在纸基底上通过单步直接激光写入(DLW)工艺制作的间隙式 LIG MSC 电极上装饰氧化锰(MnO)。嵌入 MnO 前体的纸纤维通过激光加工转化为石墨烯,同时减少盐分,从而形成 MnO-LIG。由于 MnO 的伪电容作用,由此产生的 MnO-LIG-MSC 在 1000 次弯曲循环(30°)中显示出 12.30 mF cm(0.05 mA cm)的比电容和 60% 的保持率。此外,该器件还具有很高的电化学稳定性,在 10000 次循环后仍能保持 190% 的初始比电容,能量密度高达 2.6 μWh cm(功率为 0.109 mW cm)。这项研究表明,基于氧化锰的 LIG-MSCs 有潜力用作便携式、低成本和柔性纸质电子产品的储能器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信