Algebraic 𝐾-theory of the two-periodic first Morava 𝐾-theory

IF 1.2 2区 数学 Q1 MATHEMATICS
Haldun Özgür Bayındır
{"title":"Algebraic 𝐾-theory of the two-periodic first Morava 𝐾-theory","authors":"Haldun Özgür Bayındır","doi":"10.1090/tran/9178","DOIUrl":null,"url":null,"abstract":"<p>Using the root adjunction formalism developed in an earlier work and logarithmic THH, we obtain a simplified computation of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T left-parenthesis 2 right-parenthesis Subscript asterisk Baseline normal upper K left-parenthesis k u right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>2</mml:mn> <mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∗</mml:mo> </mml:msub> <mml:mrow> <mml:mi mathvariant=\"normal\">K</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T(2)_*\\mathrm {K}(ku)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 3\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p&gt;3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Through this, we also produce a new algebraic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-theory computation; namely we obtain <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T left-parenthesis 2 right-parenthesis Subscript asterisk Baseline normal upper K left-parenthesis k u slash p right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>2</mml:mn> <mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∗</mml:mo> </mml:msub> <mml:mrow> <mml:mi mathvariant=\"normal\">K</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">T(2)_*\\mathrm {K}(ku/p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k u slash p\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">ku/p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\"application/x-tex\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-periodic Morava <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-theory spectrum of height <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\"application/x-tex\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9178","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Using the root adjunction formalism developed in an earlier work and logarithmic THH, we obtain a simplified computation of T ( 2 ) K ( k u ) T(2)_*\mathrm {K}(ku) for p > 3 p>3 . Through this, we also produce a new algebraic K K -theory computation; namely we obtain T ( 2 ) K ( k u / p ) T(2)_*\mathrm {K}(ku/p) , where k u / p ku/p is the 2 2 -periodic Morava K K -theory spectrum of height 1 1 .

双周期第一莫拉瓦迭加理论的代数迭加理论
利用早先研究中发展的根隶属形式和对数 THH,我们得到了 p > 3 p>3 时 T ( 2 ) ∗ K ( k u ) T(2)_*\mathrm {K}(ku) 的简化计算。由此,我们还得到了一个新的代数 K K 理论计算;即我们得到了 T ( 2 ) ∗ K ( k u / p ) T(2)_*\mathrm {K}(ku/p) ,其中 k u / p ku/p 是高度为 1 1 的 2 2 -periodic Morava K K 理论谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信