Hyperelliptic genus 3 curves with involutions and a Prym map

Pub Date : 2024-05-13 DOI:10.1002/mana.202300468
Paweł Borówka, Anatoli Shatsila
{"title":"Hyperelliptic genus 3 curves with involutions and a Prym map","authors":"Paweł Borówka,&nbsp;Anatoli Shatsila","doi":"10.1002/mana.202300468","DOIUrl":null,"url":null,"abstract":"<p>We characterize genus 3 complex smooth hyperelliptic curves that admit two additional involutions as curves that can be built from five points in <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mn>1</mn>\n </msup>\n <annotation>$\\mathbb {P}^1$</annotation>\n </semantics></math> with a distinguished triple. We are able to write down explicit equations for the curves and all their quotient curves. We show that, fixing one of the elliptic quotient curve, the Prym map becomes a 2:1 map and therefore the hyperelliptic Klein Prym map, constructed recently by the first author with A. Ortega, is also 2:1 in this case. As a by-product we show an explicit family of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(1,d)$</annotation>\n </semantics></math> polarized abelian surfaces (for <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>&gt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$d&amp;gt;1$</annotation>\n </semantics></math>), such that any surface in the family satisfying a certain explicit condition is abstractly non-isomorphic to its dual abelian surface.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We characterize genus 3 complex smooth hyperelliptic curves that admit two additional involutions as curves that can be built from five points in P 1 $\mathbb {P}^1$ with a distinguished triple. We are able to write down explicit equations for the curves and all their quotient curves. We show that, fixing one of the elliptic quotient curve, the Prym map becomes a 2:1 map and therefore the hyperelliptic Klein Prym map, constructed recently by the first author with A. Ortega, is also 2:1 in this case. As a by-product we show an explicit family of ( 1 , d ) $(1,d)$ polarized abelian surfaces (for d > 1 $d&gt;1$ ), such that any surface in the family satisfying a certain explicit condition is abstractly non-isomorphic to its dual abelian surface.

分享
查看原文
具有渐开线的超椭圆属 3 曲线和普赖姆映射
我们将允许两个附加渐开线的 3 属复光滑超椭圆曲线描述为可以从五个点中用一个杰出的三元组构建的曲线。我们能够写出这些曲线及其所有商曲线的明确方程。我们证明,只要固定其中一条椭圆商曲线,普赖姆映射就会变成 2:1 映射,因此第一作者最近与 A. Ortega 一起构建的超椭圆克莱因普赖姆映射在这种情况下也是 2:1。作为副产品,我们展示了一个极化无常曲面的显式族(为 ),使得族中满足特定显式条件的任何曲面都抽象地与其对偶无常曲面非同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信