Xin He , Zhe Zhu , Xiaoqiao Liao , Kai Yang , Yixue Duan , Linfeng Lv , Chuan Zhao , Wei Zhao , Jibing Chen , Peng Tian , Xiaoyu Liu , Liang He
{"title":"In-situ construction of epitaxial phase for boosting zinc nucleation on three-dimensional interface","authors":"Xin He , Zhe Zhu , Xiaoqiao Liao , Kai Yang , Yixue Duan , Linfeng Lv , Chuan Zhao , Wei Zhao , Jibing Chen , Peng Tian , Xiaoyu Liu , Liang He","doi":"10.1016/j.pnsc.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Interface modification of zinc (Zn) metal anode with conductive three-dimensional (3D) structure is widely utilized in zinc ion batteries. However, the uniformity of zinc nucleation on surface microstructure is rarely investigated which exacerbates the tip effect and raises unstable risk. Herein, a strategy via the initial copper (Cu) alloying and following sulfurization treatment is reported to accomplish boosted uniform nucleation of zinc on the modified layer with dense microstructures. This epitaxial sulfide phase not only improves the wetting area to revitalize the microstructural surface, but also forms a bifunctional zincophilic Cu<sub>2</sub>S/CuZn alloy interface layer, which combines the merits of guided local ions diffusion and improved zinc nucleation environment. As a result, a homogeneous growth of zinc on the 3D structural substrate can be realized, and cycling stability of the achieved Cu<sub>2</sub>S/CuZn electrode with a practical capacity of 1 mAh cm<sup>−2</sup> under 1 mA cm<sup>−2</sup> or amplified current density of 10 mA cm<sup>−2</sup> is significantly enhanced. This work provides an epitaxial strategy in constructing a bifunctional zincophilic interface layer for boosting zinc nucleation, and offers a new perspective on the modification of 3D surface structure for stabilization of zinc anode.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 3","pages":"Pages 578-584"},"PeriodicalIF":4.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001138","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Interface modification of zinc (Zn) metal anode with conductive three-dimensional (3D) structure is widely utilized in zinc ion batteries. However, the uniformity of zinc nucleation on surface microstructure is rarely investigated which exacerbates the tip effect and raises unstable risk. Herein, a strategy via the initial copper (Cu) alloying and following sulfurization treatment is reported to accomplish boosted uniform nucleation of zinc on the modified layer with dense microstructures. This epitaxial sulfide phase not only improves the wetting area to revitalize the microstructural surface, but also forms a bifunctional zincophilic Cu2S/CuZn alloy interface layer, which combines the merits of guided local ions diffusion and improved zinc nucleation environment. As a result, a homogeneous growth of zinc on the 3D structural substrate can be realized, and cycling stability of the achieved Cu2S/CuZn electrode with a practical capacity of 1 mAh cm−2 under 1 mA cm−2 or amplified current density of 10 mA cm−2 is significantly enhanced. This work provides an epitaxial strategy in constructing a bifunctional zincophilic interface layer for boosting zinc nucleation, and offers a new perspective on the modification of 3D surface structure for stabilization of zinc anode.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.