The Evaluation of Explicit Parameters on Eulerian-Lagrangian Simulation of Wave Impact on Coastal Bridges

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL
Arsalan Majlesi , Adnan Shahriar , Reza Nasouri , Arturo Montoya , Ao Du , Firat Y. Testik , Adolfo Matamoros
{"title":"The Evaluation of Explicit Parameters on Eulerian-Lagrangian Simulation of Wave Impact on Coastal Bridges","authors":"Arsalan Majlesi ,&nbsp;Adnan Shahriar ,&nbsp;Reza Nasouri ,&nbsp;Arturo Montoya ,&nbsp;Ao Du ,&nbsp;Firat Y. Testik ,&nbsp;Adolfo Matamoros","doi":"10.1016/j.coastaleng.2024.104540","DOIUrl":null,"url":null,"abstract":"<div><p>Simply supported bridges along the United States Gulf Coast are highly vulnerable to extreme wave conditions and water elevations. A better understanding of the loading demands on the bridges under these extreme events will lead to improved designs and enhanced resiliency. Nonetheless, analyses through numerical models pose difficulties in terms of reliability and computational burden. On the other hand, experimental models for large-scale bridge superstructures are subject to limited space allocation and related scaling challenges. Hence, optimized Finite Element (FE) models that can simulate Wave-Superstructure Interaction (WSI) are a preferred viable solution to estimate loads experienced by these bridge superstructures. Nonetheless, the results of the FE simulations are highly dependent on the numerical parameters and configurations implemented in the model; thus, the implications of parameter selection must be assessed to help scholars and engineers develop reliable FE models. In this paper, an experimental scaled model was used to calibrate numerical models following the Coupled Eulerian-Lagrangian (CEL) technique in ABAQUS. This explicit approach solves the Navier-Stokes (NS) equations to simulate fluid flow, and the dynamics response of the structure depends on analysis parameters (mass scaling factor, damping hourglass control, displacement hourglass scaling factor, and bulk viscosity scaling factors) and configurations (mesh size). The results provide a platform to compare numerical outputs and find the best parameters that suit WSI models. Moreover, the force signals applied to the superstructure experience high oscillations due to WSI. Different digital filter designs have been used to remove unwanted oscillations and provide researchers with recommendations on generating models that deliver optimal results.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924000887","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Simply supported bridges along the United States Gulf Coast are highly vulnerable to extreme wave conditions and water elevations. A better understanding of the loading demands on the bridges under these extreme events will lead to improved designs and enhanced resiliency. Nonetheless, analyses through numerical models pose difficulties in terms of reliability and computational burden. On the other hand, experimental models for large-scale bridge superstructures are subject to limited space allocation and related scaling challenges. Hence, optimized Finite Element (FE) models that can simulate Wave-Superstructure Interaction (WSI) are a preferred viable solution to estimate loads experienced by these bridge superstructures. Nonetheless, the results of the FE simulations are highly dependent on the numerical parameters and configurations implemented in the model; thus, the implications of parameter selection must be assessed to help scholars and engineers develop reliable FE models. In this paper, an experimental scaled model was used to calibrate numerical models following the Coupled Eulerian-Lagrangian (CEL) technique in ABAQUS. This explicit approach solves the Navier-Stokes (NS) equations to simulate fluid flow, and the dynamics response of the structure depends on analysis parameters (mass scaling factor, damping hourglass control, displacement hourglass scaling factor, and bulk viscosity scaling factors) and configurations (mesh size). The results provide a platform to compare numerical outputs and find the best parameters that suit WSI models. Moreover, the force signals applied to the superstructure experience high oscillations due to WSI. Different digital filter designs have been used to remove unwanted oscillations and provide researchers with recommendations on generating models that deliver optimal results.

波浪对沿海桥梁影响的欧拉-拉格朗日模拟中的显式参数评估
美国墨西哥湾沿岸的简支桥梁极易受到极端波浪条件和水位升高的影响。更好地了解这些极端事件对桥梁荷载的要求将有助于改进设计和提高抗灾能力。然而,通过数值模型进行分析在可靠性和计算负担方面存在困难。另一方面,大型桥梁上部结构的实验模型受到有限空间分配和相关扩展挑战的限制。因此,可模拟波浪-上部结构相互作用(WSI)的优化有限元(FE)模型是估算这些桥梁上部结构所受荷载的首选可行方案。然而,FE 模拟的结果在很大程度上取决于模型中的数值参数和配置;因此,必须对参数选择的影响进行评估,以帮助学者和工程师开发可靠的 FE 模型。本文采用 ABAQUS 中的欧拉-拉格朗日耦合(CEL)技术,使用实验缩放模型来校准数值模型。这种显式方法通过求解纳维-斯托克斯(NS)方程来模拟流体流动,结构的动力学响应取决于分析参数(质量缩放因子、阻尼沙漏控制、位移沙漏缩放因子和体积粘度缩放因子)和配置(网格尺寸)。这些结果为比较数值输出和找到适合 WSI 模型的最佳参数提供了一个平台。此外,由于 WSI 的影响,施加在上层建筑上的力信号会产生较大的振荡。不同的数字滤波器设计用于消除不必要的振荡,并为研究人员提供了生成可获得最佳结果的模型的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信