{"title":"From wreckage to resource: Advanced 3D printing materials from construction waste for energy infrastructure","authors":"Zhiqiang Lai, Yuancai Chen","doi":"10.1063/5.0201775","DOIUrl":null,"url":null,"abstract":"This study redefines resource efficiency in the renewable energy sector by repurposing construction waste into high-performance thixotropic soils for additive manufacturing. Our comprehensive analysis reveals that these engineered soils achieve compressive strengths up to 30 MPa—indicating a 50% increase over traditional substrates—and flexural strengths reaching 5 MPa. Rigorous life cycle assessments quantify a reduction in carbon emissions by 20% and a resource efficiency enhancement to 85%, surpassing conventional materials which average 500 kg CO2 eq/ton in carbon footprint and 60% in resource efficiency. Fine-tuned 3D printing parameters deliver unparalleled precision, achieving layer accuracy to ±0.1 mm and reducing material wastage by 30%, while accelerating construction timelines by 40%. Additionally, the materials exhibit thermal stability with only a 0.1% variation under elevated temperatures and a durability that sustains less than 0.5 MPa degradation over a 10-month period. These quantitatively robust results support the thixotropic soils' adoption, not just as a sustainable choice but as a superior alternative to conventional building materials, setting a new paradigm in the construction of environmentally resilient and economically viable renewable energy infrastructures.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0201775","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study redefines resource efficiency in the renewable energy sector by repurposing construction waste into high-performance thixotropic soils for additive manufacturing. Our comprehensive analysis reveals that these engineered soils achieve compressive strengths up to 30 MPa—indicating a 50% increase over traditional substrates—and flexural strengths reaching 5 MPa. Rigorous life cycle assessments quantify a reduction in carbon emissions by 20% and a resource efficiency enhancement to 85%, surpassing conventional materials which average 500 kg CO2 eq/ton in carbon footprint and 60% in resource efficiency. Fine-tuned 3D printing parameters deliver unparalleled precision, achieving layer accuracy to ±0.1 mm and reducing material wastage by 30%, while accelerating construction timelines by 40%. Additionally, the materials exhibit thermal stability with only a 0.1% variation under elevated temperatures and a durability that sustains less than 0.5 MPa degradation over a 10-month period. These quantitatively robust results support the thixotropic soils' adoption, not just as a sustainable choice but as a superior alternative to conventional building materials, setting a new paradigm in the construction of environmentally resilient and economically viable renewable energy infrastructures.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.