Tyler J.M. Jordan , Lisa B. Mamo , Thierry Olivry , Zhi Liu , Petra Bizikova
{"title":"Re-evaluating the prevalence of anti-desmocollin-1 IgA autoantibodies in canine pemphigus foliaceus","authors":"Tyler J.M. Jordan , Lisa B. Mamo , Thierry Olivry , Zhi Liu , Petra Bizikova","doi":"10.1016/j.vetimm.2024.110773","DOIUrl":null,"url":null,"abstract":"<div><p>Pemphigus foliaceus (PF) is an autoimmune skin disease of dogs characterized by intraepidermal pustules containing neutrophils and dissociated keratinocytes that develop in association with circulating and tissue-bound IgG autoantibodies. A subset of IgG autoantibodies in canine PF target desmocollin-1 (DSC1), a component of intercellular adhesion complexes within the epidermis. Passive transfer of IgG autoantibodies from canine PF sera to mice was previously shown to induce skin disease in the absence of infiltrating neutrophils. In attempts to identify a mechanism responsible for neutrophil recruitment, past studies evaluated the prevalence of IgA autoantibodies in canine PF sera where they were found in <20<!--> <!-->% of affected dogs. We re-evaluated the prevalence of anti-DSC1 IgA in canine PF due to concerns regarding the sensitivity of previously used methods. We hypothesized that anti-DSC1 IgA are present in most dogs with PF but have been under-detected due to competition with concurrent anti-DSC1 IgG for binding to their mutual antigenic target. Despite removing approximately 80<!--> <!-->% of IgG from patient sera using affinity chromatography, we did not detect an increase in anti-DSC1 IgA by performing indirect immunofluorescence on canine DSC1-transfected HEK293T cells. Taken together, our results do not support a role for pathogenic IgA in canine PF.</p></div>","PeriodicalId":23511,"journal":{"name":"Veterinary immunology and immunopathology","volume":"273 ","pages":"Article 110773"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary immunology and immunopathology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016524272400059X","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pemphigus foliaceus (PF) is an autoimmune skin disease of dogs characterized by intraepidermal pustules containing neutrophils and dissociated keratinocytes that develop in association with circulating and tissue-bound IgG autoantibodies. A subset of IgG autoantibodies in canine PF target desmocollin-1 (DSC1), a component of intercellular adhesion complexes within the epidermis. Passive transfer of IgG autoantibodies from canine PF sera to mice was previously shown to induce skin disease in the absence of infiltrating neutrophils. In attempts to identify a mechanism responsible for neutrophil recruitment, past studies evaluated the prevalence of IgA autoantibodies in canine PF sera where they were found in <20 % of affected dogs. We re-evaluated the prevalence of anti-DSC1 IgA in canine PF due to concerns regarding the sensitivity of previously used methods. We hypothesized that anti-DSC1 IgA are present in most dogs with PF but have been under-detected due to competition with concurrent anti-DSC1 IgG for binding to their mutual antigenic target. Despite removing approximately 80 % of IgG from patient sera using affinity chromatography, we did not detect an increase in anti-DSC1 IgA by performing indirect immunofluorescence on canine DSC1-transfected HEK293T cells. Taken together, our results do not support a role for pathogenic IgA in canine PF.
期刊介绍:
The journal reports basic, comparative and clinical immunology as they pertain to the animal species designated here: livestock, poultry, and fish species that are major food animals and companion animals such as cats, dogs, horses and camels, and wildlife species that act as reservoirs for food, companion or human infectious diseases, or as models for human disease.
Rodent models of infectious diseases that are of importance in the animal species indicated above,when the disease requires a level of containment that is not readily available for larger animal experimentation (ABSL3), will be considered. Papers on rabbits, lizards, guinea pigs, badgers, armadillos, elephants, antelope, and buffalo will be reviewed if the research advances our fundamental understanding of immunology, or if they act as a reservoir of infectious disease for the primary animal species designated above, or for humans. Manuscripts employing other species will be reviewed if justified as fitting into the categories above.
The following topics are appropriate: biology of cells and mechanisms of the immune system, immunochemistry, immunodeficiencies, immunodiagnosis, immunogenetics, immunopathology, immunology of infectious disease and tumors, immunoprophylaxis including vaccine development and delivery, immunological aspects of pregnancy including passive immunity, autoimmuity, neuroimmunology, and transplanatation immunology. Manuscripts that describe new genes and development of tools such as monoclonal antibodies are also of interest when part of a larger biological study. Studies employing extracts or constituents (plant extracts, feed additives or microbiome) must be sufficiently defined to be reproduced in other laboratories and also provide evidence for possible mechanisms and not simply show an effect on the immune system.