Zhiheng Yang , Bixiao Li , Ruihong Bu , Zhengduo Wang , Zhenguo Xin , Zilong Li , Lixin Zhang , Weishan Wang
{"title":"A highly efficient method for genomic deletion across diverse lengths in thermophilic Parageobacillus thermoglucosidasius","authors":"Zhiheng Yang , Bixiao Li , Ruihong Bu , Zhengduo Wang , Zhenguo Xin , Zilong Li , Lixin Zhang , Weishan Wang","doi":"10.1016/j.synbio.2024.05.009","DOIUrl":null,"url":null,"abstract":"<div><p><em>Parageobacillus thermoglucosidasius</em> is emerging as a highly promising thermophilic organism for metabolic engineering. The utilization of CRISPR-Cas technologies has facilitated programmable genetic manipulation in <em>P. thermoglucosidasius</em>. However, the absence of thermostable NHEJ enzymes limited the capability of the endogenous type I CRISPR-Cas system to generate a variety of extensive genomic deletions. Here, two thermophilic NHEJ enzymes were identified and combined with the endogenous type I CRISPR-Cas system to develop a genetic manipulation tool that can achieve long-range genomic deletion across various lengths. By optimizing this tool—through adjusting the expression level of NHEJ enzymes and leveraging our discovery of a negative correlation between GC content of the guide RNA (gRNA) and deletion efficacy—we streamlined a comprehensive gRNA selection manual for whole-genome editing, achieving a 100 % success rate in randomly selecting gRNAs. Notably, using just one gRNA, we achieved genomic deletions spanning diverse length, exceeding 200 kilobases. This tool will facilitate the genomic manipulation of <em>P. thermoglucosidasius</em> for both fundamental research and applied engineering studies, further unlocking its potential as a thermophilic cell factory.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 4","pages":"Pages 658-666"},"PeriodicalIF":4.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X2400084X/pdfft?md5=c0ba3cfd0579149a88026a1bb7d806af&pid=1-s2.0-S2405805X2400084X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X2400084X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Parageobacillus thermoglucosidasius is emerging as a highly promising thermophilic organism for metabolic engineering. The utilization of CRISPR-Cas technologies has facilitated programmable genetic manipulation in P. thermoglucosidasius. However, the absence of thermostable NHEJ enzymes limited the capability of the endogenous type I CRISPR-Cas system to generate a variety of extensive genomic deletions. Here, two thermophilic NHEJ enzymes were identified and combined with the endogenous type I CRISPR-Cas system to develop a genetic manipulation tool that can achieve long-range genomic deletion across various lengths. By optimizing this tool—through adjusting the expression level of NHEJ enzymes and leveraging our discovery of a negative correlation between GC content of the guide RNA (gRNA) and deletion efficacy—we streamlined a comprehensive gRNA selection manual for whole-genome editing, achieving a 100 % success rate in randomly selecting gRNAs. Notably, using just one gRNA, we achieved genomic deletions spanning diverse length, exceeding 200 kilobases. This tool will facilitate the genomic manipulation of P. thermoglucosidasius for both fundamental research and applied engineering studies, further unlocking its potential as a thermophilic cell factory.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.