Dynamic Analysis and Field-Programmable Gate Array Implementation of a 5D Fractional-Order Memristive Hyperchaotic System with Multiple Coexisting Attractors

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Fei Yu, Wuxiong Zhang, Xiaoli Xiao, Wei Yao, Shuo Cai, Jin Zhang, Chunhua Wang, Yi Li
{"title":"Dynamic Analysis and Field-Programmable Gate Array Implementation of a 5D Fractional-Order Memristive Hyperchaotic System with Multiple Coexisting Attractors","authors":"Fei Yu, Wuxiong Zhang, Xiaoli Xiao, Wei Yao, Shuo Cai, Jin Zhang, Chunhua Wang, Yi Li","doi":"10.3390/fractalfract8050271","DOIUrl":null,"url":null,"abstract":"On the basis of the chaotic system proposed by Wang et al. in 2023, this paper constructs a 5D fractional-order memristive hyperchaotic system (FOMHS) with multiple coexisting attractors through coupling of magnetic control memristors and dimension expansion. Firstly, the divergence, Kaplan–Yorke dimension, and equilibrium stability of the chaotic model are studied. Subsequently, we explore the construction of the 5D FOMHS, introducing the definitions of the Caputo differential operator and the Riemann–Liouville integral operator and employing the Adomian resolving approach to decompose the linears, the nonlinears, and the constants of the system. The complex dynamic characteristics of the system are analyzed by phase diagrams, Lyapunov exponent spectra, time-domain diagrams, etc. Finally, the hardware circuit of the proposed 5D FOMHS is performed by FPGA, and its randomness is verified using the NIST tool.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8050271","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

On the basis of the chaotic system proposed by Wang et al. in 2023, this paper constructs a 5D fractional-order memristive hyperchaotic system (FOMHS) with multiple coexisting attractors through coupling of magnetic control memristors and dimension expansion. Firstly, the divergence, Kaplan–Yorke dimension, and equilibrium stability of the chaotic model are studied. Subsequently, we explore the construction of the 5D FOMHS, introducing the definitions of the Caputo differential operator and the Riemann–Liouville integral operator and employing the Adomian resolving approach to decompose the linears, the nonlinears, and the constants of the system. The complex dynamic characteristics of the system are analyzed by phase diagrams, Lyapunov exponent spectra, time-domain diagrams, etc. Finally, the hardware circuit of the proposed 5D FOMHS is performed by FPGA, and its randomness is verified using the NIST tool.
具有多个共存吸引子的 5D 分数阶膜超混沌系统的动态分析与现场可编程门阵列实现
本文在2023年Wang等人提出的混沌系统基础上,通过磁控忆阻器耦合和维数扩展,构建了一个具有多个共存吸引子的5维分数阶忆阻器超混沌系统(FOMHS)。首先,研究了混沌模型的发散性、Kaplan-Yorke维数和平衡稳定性。随后,我们探讨了 5D FOMHS 的构建,引入了 Caputo 微分算子和黎曼-刘维尔积分算子的定义,并采用 Adomian 解析法分解了系统的线性、非线性和常数。通过相图、Lyapunov 指数谱、时域图等分析了系统的复杂动态特性。最后,通过 FPGA 实现了所提出的 5D FOMHS 的硬件电路,并使用 NIST 工具验证了其随机性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信