{"title":"Time for mixing: Mixed dicationic energetic salts based on methylene bridged 4-hydroxy-3,5-dinitropyrazole and tetrazole for tunable performance","authors":"Prachi Bhatia , Vikas D. Ghule , Dheeraj Kumar","doi":"10.1016/j.enmf.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Various types of materials have been explored in the pursuit of high energy density materials (HEDMs) that have balanced energy and stability. Among them, energetic salts show numerous advantages, such as lower vapor pressures, high physical stabilities, and the opportunity for favorable tuning by careful selection of cations/anions. Nitrogen-rich bases are generally used as cations for energetic salt formation. While the synthesis of salts with larger cations lowers the sensitivity, smaller cations aid better energetic performance. A combination of both in the same ionic moieties might help in the formation of a superior explosive. In this work, a facile route for the synthesis of mixed dicationic energetic salts based on 1-((1<em>H</em>-tetrazol-5-yl)methyl)-3,5-dinitro-1<em>H</em>-pyrazol-4-ol (compound <strong>1</strong>) has been explored by various combinations of bigger and smaller cations (compounds <strong>4</strong>–<strong>10</strong>). All the synthesized energetic salts showed high positive heats of formation, energetic performance comparable to TATB, excellent stability towards impact and friction, and acceptable thermal stabilities. This improved technique will provide an additional option for fine-tuning the energetic properties of HEDMs and will facilitate in exploring the role of various cations in the overall performance of the energetic compounds.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000332/pdfft?md5=1c23ee7fc721386d4ee38c7b8b05c914&pid=1-s2.0-S2666647224000332-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetic Materials Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666647224000332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Various types of materials have been explored in the pursuit of high energy density materials (HEDMs) that have balanced energy and stability. Among them, energetic salts show numerous advantages, such as lower vapor pressures, high physical stabilities, and the opportunity for favorable tuning by careful selection of cations/anions. Nitrogen-rich bases are generally used as cations for energetic salt formation. While the synthesis of salts with larger cations lowers the sensitivity, smaller cations aid better energetic performance. A combination of both in the same ionic moieties might help in the formation of a superior explosive. In this work, a facile route for the synthesis of mixed dicationic energetic salts based on 1-((1H-tetrazol-5-yl)methyl)-3,5-dinitro-1H-pyrazol-4-ol (compound 1) has been explored by various combinations of bigger and smaller cations (compounds 4–10). All the synthesized energetic salts showed high positive heats of formation, energetic performance comparable to TATB, excellent stability towards impact and friction, and acceptable thermal stabilities. This improved technique will provide an additional option for fine-tuning the energetic properties of HEDMs and will facilitate in exploring the role of various cations in the overall performance of the energetic compounds.