Parameter identifiability of a within-host SARS-CoV-2 epidemic model

IF 8.8 3区 医学 Q1 Medicine
Junyuan Yang , Sijin Wu , Xuezhi Li , Xiaoyan Wang , Xue-Song Zhang , Lu Hou
{"title":"Parameter identifiability of a within-host SARS-CoV-2 epidemic model","authors":"Junyuan Yang ,&nbsp;Sijin Wu ,&nbsp;Xuezhi Li ,&nbsp;Xiaoyan Wang ,&nbsp;Xue-Song Zhang ,&nbsp;Lu Hou","doi":"10.1016/j.idm.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Parameter identification involves the estimation of undisclosed parameters within a system based on observed data and mathematical models. In this investigation, we employ DAISY to meticulously examine the structural identifiability of parameters of a within-host SARS-CoV-2 epidemic model, taking into account an array of observable datasets. Furthermore, Monte Carlo simulations are performed to offer a comprehensive practical analysis of model parameters. Lastly, sensitivity analysis is employed to ascertain that decreasing the replication rate of the SARS-CoV-2 virus and curbing the infectious period are the most efficacious measures in alleviating the dissemination of COVID-19 amongst hosts.</p></div>","PeriodicalId":36831,"journal":{"name":"Infectious Disease Modelling","volume":null,"pages":null},"PeriodicalIF":8.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468042724000708/pdfft?md5=a60b62df302e3207c3429329af64556f&pid=1-s2.0-S2468042724000708-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Modelling","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468042724000708","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Parameter identification involves the estimation of undisclosed parameters within a system based on observed data and mathematical models. In this investigation, we employ DAISY to meticulously examine the structural identifiability of parameters of a within-host SARS-CoV-2 epidemic model, taking into account an array of observable datasets. Furthermore, Monte Carlo simulations are performed to offer a comprehensive practical analysis of model parameters. Lastly, sensitivity analysis is employed to ascertain that decreasing the replication rate of the SARS-CoV-2 virus and curbing the infectious period are the most efficacious measures in alleviating the dissemination of COVID-19 amongst hosts.

宿主内部 SARS-CoV-2 流行模型的参数可识别性
参数识别是指根据观测数据和数学模型对系统中未披露的参数进行估计。在这项研究中,我们利用 DAISY,结合一系列可观测数据集,细致检验了宿主内 SARS-CoV-2 流行模型参数的结构可识别性。此外,还进行了蒙特卡罗模拟,对模型参数进行了全面的实际分析。最后,通过敏感性分析,确定降低 SARS-CoV-2 病毒的复制率和缩短感染期是缓解 COVID-19 在宿主间传播的最有效措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infectious Disease Modelling
Infectious Disease Modelling Mathematics-Applied Mathematics
CiteScore
17.00
自引率
3.40%
发文量
73
审稿时长
17 weeks
期刊介绍: Infectious Disease Modelling is an open access journal that undergoes peer-review. Its main objective is to facilitate research that combines mathematical modelling, retrieval and analysis of infection disease data, and public health decision support. The journal actively encourages original research that improves this interface, as well as review articles that highlight innovative methodologies relevant to data collection, informatics, and policy making in the field of public health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信