Surface modification of polymers by 50 Hz dielectric barrier discharge (DBD) plasma produced in air at 40 Torr

Deepak Prasad Subedi, Rajesh Prakash Guragain, Ujjwal Man Joshi
{"title":"Surface modification of polymers by 50 Hz dielectric barrier discharge (DBD) plasma produced in air at 40 Torr","authors":"Deepak Prasad Subedi,&nbsp;Rajesh Prakash Guragain,&nbsp;Ujjwal Man Joshi","doi":"10.1016/j.fpp.2024.100058","DOIUrl":null,"url":null,"abstract":"<div><p>This study deals with the surface modification of polymer films utilizing a custom designed cost- effective dielectric barrier discharge (DBD) plasma produced in air at reduced pressure. We comprehensively examine diverse aspects of surface modification, encompassing electrical discharge characterization, optical signal analysis, contact angle measurements, and surface morphology assessment. Our observations unveiled the presence of distinctive filamentary streamer-based micro-discharges during the DBD process, with a power consumption of approximately 5.64 W and an electron density of 3.4 × 10<sup>11</sup> cm<sup>−3</sup>. Optical emission spectroscopy identifies multiple emission peaks attributed to nitrogen emissions. Notably, plasma treatment substantially reduced the water contact angle and augmented surface energy on polypropylene (PP) and polyethylene terephthalate (PET) films. Surface morphology analysis illustrated an increase in surface roughness following plasma treatment. Intriguingly, the initial rapid alterations in wettability and surface morphology attained equilibrium after approximately 30 s of treatment. This study highlights atmospheric DBD plasma's effectiveness in customizing polymer surfaces, improving wettability and roughness, offering promising applications for enhanced adhesion and wetting.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100058"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000232/pdfft?md5=812df3a553b453a87a7c8e3cdfd72b78&pid=1-s2.0-S2772828524000232-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772828524000232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study deals with the surface modification of polymer films utilizing a custom designed cost- effective dielectric barrier discharge (DBD) plasma produced in air at reduced pressure. We comprehensively examine diverse aspects of surface modification, encompassing electrical discharge characterization, optical signal analysis, contact angle measurements, and surface morphology assessment. Our observations unveiled the presence of distinctive filamentary streamer-based micro-discharges during the DBD process, with a power consumption of approximately 5.64 W and an electron density of 3.4 × 1011 cm−3. Optical emission spectroscopy identifies multiple emission peaks attributed to nitrogen emissions. Notably, plasma treatment substantially reduced the water contact angle and augmented surface energy on polypropylene (PP) and polyethylene terephthalate (PET) films. Surface morphology analysis illustrated an increase in surface roughness following plasma treatment. Intriguingly, the initial rapid alterations in wettability and surface morphology attained equilibrium after approximately 30 s of treatment. This study highlights atmospheric DBD plasma's effectiveness in customizing polymer surfaces, improving wettability and roughness, offering promising applications for enhanced adhesion and wetting.

在 40 托空气中产生的 50 赫兹介质阻挡放电(DBD)等离子体对聚合物进行表面改性
本研究涉及利用定制设计的低成本介质阻挡放电(DBD)等离子体在空气中减压生产聚合物薄膜的表面改性。我们全面研究了表面改性的各个方面,包括放电表征、光学信号分析、接触角测量和表面形态评估。我们的观察结果表明,在 DBD 过程中存在独特的丝状流基微放电,功耗约为 5.64 W,电子密度为 3.4 × 1011 cm-3。光学发射光谱确定了归因于氮发射的多个发射峰。值得注意的是,等离子处理大大降低了聚丙烯(PP)和聚对苯二甲酸乙二酯(PET)薄膜的水接触角并提高了其表面能。表面形态分析表明,等离子处理后表面粗糙度增加。有趣的是,最初润湿性和表面形态的快速变化在处理约 30 秒后达到平衡。这项研究强调了大气中的 DBD 等离子体在定制聚合物表面、改善润湿性和粗糙度方面的有效性,为增强粘附性和润湿性提供了广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信