Claudio Cicconetti, Marco Conti, Andrea Passarella
{"title":"Analysis of micro- vs. macro-flows management in QKD-secured edge computing","authors":"Claudio Cicconetti, Marco Conti, Andrea Passarella","doi":"10.1016/j.pmcj.2024.101937","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum Key Distribution (QKD) holds the promise of a secure exchange of cryptographic material between applications that have access to the same network of QKD nodes, interconnected through fiber optic or satellite links. Worldwide several such networks are being deployed at a metropolitan level, where edge computing is already offered by the telco operators to customers as a viable alternative to both cloud and on-premise hosting of computational resources. In this paper, we investigate the implications of enabling QKD for edge-native applications from a practical perspective of resource allocation in the QKD network and the edge infrastructure. Specifically, we consider the dichotomy between aggregating all the applications on the same source–destination path vs. adopting a more flexible micro-flow approach, inspired from Software Defined Networking (SDN) concepts. Our simulation results show that there is a fundamental trade-off between the efficient use of resources and the signaling overhead, which we managed to diminish with the use of suitable hybrid solutions.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"102 ","pages":"Article 101937"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574119224000634/pdfft?md5=66f40de1122375679c5bab3134cbf374&pid=1-s2.0-S1574119224000634-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119224000634","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum Key Distribution (QKD) holds the promise of a secure exchange of cryptographic material between applications that have access to the same network of QKD nodes, interconnected through fiber optic or satellite links. Worldwide several such networks are being deployed at a metropolitan level, where edge computing is already offered by the telco operators to customers as a viable alternative to both cloud and on-premise hosting of computational resources. In this paper, we investigate the implications of enabling QKD for edge-native applications from a practical perspective of resource allocation in the QKD network and the edge infrastructure. Specifically, we consider the dichotomy between aggregating all the applications on the same source–destination path vs. adopting a more flexible micro-flow approach, inspired from Software Defined Networking (SDN) concepts. Our simulation results show that there is a fundamental trade-off between the efficient use of resources and the signaling overhead, which we managed to diminish with the use of suitable hybrid solutions.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.