K. Shaw, C. Standish, Sara E. Fowell, Joseph A. Stewart, K. Castillo, Justin B. Ries, Gavin L. Foster
{"title":"Century‐Long Records of Sedimentary Input on a Caribbean Reef From Coral Ba/Ca Ratios","authors":"K. Shaw, C. Standish, Sara E. Fowell, Joseph A. Stewart, K. Castillo, Justin B. Ries, Gavin L. Foster","doi":"10.1029/2023pa004746","DOIUrl":null,"url":null,"abstract":"Coral reef ecosystems are delicately balanced and are thus prone to disruption by stressors such as storms, disease, climate variability and natural disasters. Most tropical coral populations worldwide are now in rapid decline owing to additional anthropogenic pressures, such as global warming, ocean acidification and a variety of local stressors. One such problem is the addition of excess sediment and nutrients flux to reefs from increased soil erosion from land use changes. Here we present century‐long Ba/Ca records from two Siderastrea siderea colonies as a proxy for local riverine discharge and sediment flux to the southern Mesoamerican Barrier Reef System (MBRS). The coral colonies have linear extension trends, which can be seen as a first‐order indicator for coral health and response. The coral colony that exhibits a decline in linear extension rate from the forereef of the MBRS, mainly receives riverine input from Honduras, whilst the coral from the backreef, which does not exhibit a decline in extension rate, primarily receives riverine input from more sparsely populated regions of Belize. Coral Ba/Ca increased (>70%) through time in the forereef colony, while the backreef colony showed little long‐term increase in Ba/Ca over the last century. Our results suggest that increasing sediment supply may have played a role in the decline of forereef skeletal extension in the southernmost MBRS region, likely stemming from increasing land‐use changes in Honduras.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023pa004746","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Coral reef ecosystems are delicately balanced and are thus prone to disruption by stressors such as storms, disease, climate variability and natural disasters. Most tropical coral populations worldwide are now in rapid decline owing to additional anthropogenic pressures, such as global warming, ocean acidification and a variety of local stressors. One such problem is the addition of excess sediment and nutrients flux to reefs from increased soil erosion from land use changes. Here we present century‐long Ba/Ca records from two Siderastrea siderea colonies as a proxy for local riverine discharge and sediment flux to the southern Mesoamerican Barrier Reef System (MBRS). The coral colonies have linear extension trends, which can be seen as a first‐order indicator for coral health and response. The coral colony that exhibits a decline in linear extension rate from the forereef of the MBRS, mainly receives riverine input from Honduras, whilst the coral from the backreef, which does not exhibit a decline in extension rate, primarily receives riverine input from more sparsely populated regions of Belize. Coral Ba/Ca increased (>70%) through time in the forereef colony, while the backreef colony showed little long‐term increase in Ba/Ca over the last century. Our results suggest that increasing sediment supply may have played a role in the decline of forereef skeletal extension in the southernmost MBRS region, likely stemming from increasing land‐use changes in Honduras.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.