Characterization of quadratic ε−CNS polynomials

Pub Date : 2024-05-16 DOI:10.1016/j.jnt.2024.04.007
Borka Jadrijević , Kristina Miletić
{"title":"Characterization of quadratic ε−CNS polynomials","authors":"Borka Jadrijević ,&nbsp;Kristina Miletić","doi":"10.1016/j.jnt.2024.04.007","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we give characterization of quadratic <em>ε</em>-canonical number system (<em>ε</em>−CNS) polynomials for all values <span><math><mi>ε</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Our characterization provides a unified view of the well-known characterizations of the classical quadratic CNS polynomials (<span><math><mi>ε</mi><mo>=</mo><mn>0</mn></math></span>) and quadratic SCNS polynomials (<span><math><mi>ε</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>). This result is a consequence of our new characterization results of <em>ε</em>-shift radix systems (<em>ε</em>−SRS) in the two-dimensional case and their relation to quadratic <em>ε</em>−CNS polynomials.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give characterization of quadratic ε-canonical number system (ε−CNS) polynomials for all values ε[0,1). Our characterization provides a unified view of the well-known characterizations of the classical quadratic CNS polynomials (ε=0) and quadratic SCNS polynomials (ε=1/2). This result is a consequence of our new characterization results of ε-shift radix systems (ε−SRS) in the two-dimensional case and their relation to quadratic ε−CNS polynomials.

分享
查看原文
二次ε-CNS 多项式的特征
本文给出了所有ε∈[0,1]值的二次ε-典型数系(ε-CNS)多项式的特征。我们的描述统一了经典二次 CNS 多项式(ε=0)和二次 SCNS 多项式(ε=1/2)的著名描述。这一结果是我们在二维情况下对ε-移位弧度系统(ε-SRS)的新表征结果及其与二次ε-CNS 多项式的关系的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信