Xian Jun Long , Xiao Ting Wang , Gao Xi Li , Geng Hua Li
{"title":"A Bregman proximal subgradient algorithm for nonconvex and nonsmooth fractional optimization problems","authors":"Xian Jun Long , Xiao Ting Wang , Gao Xi Li , Geng Hua Li","doi":"10.1016/j.apnum.2024.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study a class of nonconvex and nonsmooth fractional optimization problem, where the numerator of which is the sum of a nonsmooth and nonconvex function and a relative smooth nonconvex function, while the denominator is relative weakly convex nonsmooth function. We propose a Bregman proximal subgradient algorithm for solving this type of fractional optimization problems. Under moderate conditions, we prove that the subsequence generated by the proposed algorithm converges to a critical point, and the generated sequence globally converges to a critical point when the objective function satisfies the Kurdyka-Łojasiewicz property. We also obtain the convergence rate of the proposed algorithm. Finally, two numerical experiments illustrate the effectiveness and superiority of the algorithm. Our results give a positive answer to an open problem proposed by Bot et al. <span>[14]</span>.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"202 ","pages":"Pages 209-221"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001120","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study a class of nonconvex and nonsmooth fractional optimization problem, where the numerator of which is the sum of a nonsmooth and nonconvex function and a relative smooth nonconvex function, while the denominator is relative weakly convex nonsmooth function. We propose a Bregman proximal subgradient algorithm for solving this type of fractional optimization problems. Under moderate conditions, we prove that the subsequence generated by the proposed algorithm converges to a critical point, and the generated sequence globally converges to a critical point when the objective function satisfies the Kurdyka-Łojasiewicz property. We also obtain the convergence rate of the proposed algorithm. Finally, two numerical experiments illustrate the effectiveness and superiority of the algorithm. Our results give a positive answer to an open problem proposed by Bot et al. [14].
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.