A Bregman proximal subgradient algorithm for nonconvex and nonsmooth fractional optimization problems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xian Jun Long , Xiao Ting Wang , Gao Xi Li , Geng Hua Li
{"title":"A Bregman proximal subgradient algorithm for nonconvex and nonsmooth fractional optimization problems","authors":"Xian Jun Long ,&nbsp;Xiao Ting Wang ,&nbsp;Gao Xi Li ,&nbsp;Geng Hua Li","doi":"10.1016/j.apnum.2024.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study a class of nonconvex and nonsmooth fractional optimization problem, where the numerator of which is the sum of a nonsmooth and nonconvex function and a relative smooth nonconvex function, while the denominator is relative weakly convex nonsmooth function. We propose a Bregman proximal subgradient algorithm for solving this type of fractional optimization problems. Under moderate conditions, we prove that the subsequence generated by the proposed algorithm converges to a critical point, and the generated sequence globally converges to a critical point when the objective function satisfies the Kurdyka-Łojasiewicz property. We also obtain the convergence rate of the proposed algorithm. Finally, two numerical experiments illustrate the effectiveness and superiority of the algorithm. Our results give a positive answer to an open problem proposed by Bot et al. <span>[14]</span>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a class of nonconvex and nonsmooth fractional optimization problem, where the numerator of which is the sum of a nonsmooth and nonconvex function and a relative smooth nonconvex function, while the denominator is relative weakly convex nonsmooth function. We propose a Bregman proximal subgradient algorithm for solving this type of fractional optimization problems. Under moderate conditions, we prove that the subsequence generated by the proposed algorithm converges to a critical point, and the generated sequence globally converges to a critical point when the objective function satisfies the Kurdyka-Łojasiewicz property. We also obtain the convergence rate of the proposed algorithm. Finally, two numerical experiments illustrate the effectiveness and superiority of the algorithm. Our results give a positive answer to an open problem proposed by Bot et al. [14].

非凸和非光滑分数优化问题的布雷格曼近似子梯度算法
本文研究了一类非凸非光滑分式优化问题,其分子为非光滑非凸函数与相对光滑非凸函数之和,分母为相对弱凸非光滑函数。我们提出了一种 Bregman 近似子梯度算法来求解这类分数优化问题。在适度条件下,我们证明了当目标函数满足 Kurdyka-Łojasiewicz 特性时,所提算法生成的子序列会收敛到临界点,并且生成的序列会全局收敛到临界点。我们还得出了所提算法的收敛速率。最后,两个数值实验说明了算法的有效性和优越性。我们的结果为 Bot 等人提出的一个开放性问题给出了积极的答案[14]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信