Insight into spatial variations of DOM fractions and its interactions with microbial communities of shallow groundwater in a mesoscale lowland river watershed
Hongyu Ding , Jing Su , Yuanyuan Sun , Huibin Yu , Mingxia Zheng , Beidou Xi
{"title":"Insight into spatial variations of DOM fractions and its interactions with microbial communities of shallow groundwater in a mesoscale lowland river watershed","authors":"Hongyu Ding , Jing Su , Yuanyuan Sun , Huibin Yu , Mingxia Zheng , Beidou Xi","doi":"10.1016/j.watres.2024.121797","DOIUrl":null,"url":null,"abstract":"<div><p>Dissolved organic matter (DOM) plays a crucial role in driving biogeochemical processes and determining water quality in shallow groundwater systems, where DOM could be susceptible to dynamic influences of surface water influx. This study employed fluorescence excitation-emission matrix (EEM) spectroscopy combined with principal component coefficients, parallel factor analysis (PARAFAC), co-occurrence network analysis and structural equation modeling (SEM) to examine changes of DOM fractions from surface water to shallow groundwater in a mesoscale lowland river basin. Combining stable isotope and hydrochemical parameters, except for surface water (SW), two groups of groundwater samples were defined, namely, deeply influenced by surface water (IGW) and groundwater nearly non-influenced by surface water (UGW), which were 50.34 % and 19.39 % recharged by surface water, respectively. According to principal component coefficients, reassembled EEM data of these categories highlighted variations of the tyrosine-like peak in DOM. EEMs coupled with PARAFAC extracted five components (C1-C5), i.e. C1, protein-like substances, C2 and C4, humic-like substances, and C3 and C5, microbial-related substances. The abundance of the protein-like was SW > IGW > UGW, while the order of the humic-like was opposite. The bacterial communities exhibited an obvious cluster across three regions, which hinted their sensitivity to variations in environmental conditions. Based on co-occurrence, SW represented the highest connectivity between bacterial OTUs and DOM fractions, followed by IGW and UGW. SEM revealed that microbial activities increased bioavailability of the humic-like in the SW and IGW, whereas microbial compositions promoted the evolution of humic-like substances in the UGW. Generally, these results could be conducive to discern dissimilarity in DOM fractions across surface water and shallow groundwater, and further trace their interactions in the river watershed.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"258 ","pages":"Article 121797"},"PeriodicalIF":12.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424006985","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dissolved organic matter (DOM) plays a crucial role in driving biogeochemical processes and determining water quality in shallow groundwater systems, where DOM could be susceptible to dynamic influences of surface water influx. This study employed fluorescence excitation-emission matrix (EEM) spectroscopy combined with principal component coefficients, parallel factor analysis (PARAFAC), co-occurrence network analysis and structural equation modeling (SEM) to examine changes of DOM fractions from surface water to shallow groundwater in a mesoscale lowland river basin. Combining stable isotope and hydrochemical parameters, except for surface water (SW), two groups of groundwater samples were defined, namely, deeply influenced by surface water (IGW) and groundwater nearly non-influenced by surface water (UGW), which were 50.34 % and 19.39 % recharged by surface water, respectively. According to principal component coefficients, reassembled EEM data of these categories highlighted variations of the tyrosine-like peak in DOM. EEMs coupled with PARAFAC extracted five components (C1-C5), i.e. C1, protein-like substances, C2 and C4, humic-like substances, and C3 and C5, microbial-related substances. The abundance of the protein-like was SW > IGW > UGW, while the order of the humic-like was opposite. The bacterial communities exhibited an obvious cluster across three regions, which hinted their sensitivity to variations in environmental conditions. Based on co-occurrence, SW represented the highest connectivity between bacterial OTUs and DOM fractions, followed by IGW and UGW. SEM revealed that microbial activities increased bioavailability of the humic-like in the SW and IGW, whereas microbial compositions promoted the evolution of humic-like substances in the UGW. Generally, these results could be conducive to discern dissimilarity in DOM fractions across surface water and shallow groundwater, and further trace their interactions in the river watershed.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.