Indeterminate Hamburger moment problem: Entropy convergence

Pub Date : 2024-05-17 DOI:10.1016/j.spl.2024.110155
Pier Luigi Novi Inverardi , Aldo Tagliani , Mariyan Milev
{"title":"Indeterminate Hamburger moment problem: Entropy convergence","authors":"Pier Luigi Novi Inverardi ,&nbsp;Aldo Tagliani ,&nbsp;Mariyan Milev","doi":"10.1016/j.spl.2024.110155","DOIUrl":null,"url":null,"abstract":"<div><p>The indeterminate Hamburger moment problem is considered, jointly with all its real axis supported probability density functions. As a consequence of entropy functional concavity, out of such densities there is one which has largest entropy and that plays a fundamental role: we call it <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>h</mi><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>. It is proved that the approximate Maximum Entropy (MaxEnt) densities constrained by an increasing number of moments converge in entropy to <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>h</mi><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span> where the value of its entropy can be finite or <span><math><mrow><mo>−</mo><mi>∞</mi></mrow></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016771522400124X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The indeterminate Hamburger moment problem is considered, jointly with all its real axis supported probability density functions. As a consequence of entropy functional concavity, out of such densities there is one which has largest entropy and that plays a fundamental role: we call it fhmax. It is proved that the approximate Maximum Entropy (MaxEnt) densities constrained by an increasing number of moments converge in entropy to fhmax where the value of its entropy can be finite or .

分享
查看原文
不确定汉堡矩问题:熵收敛
不确定的汉堡矩问题与所有实轴支持的概率密度函数一起被考虑。由于熵函数凹性的结果,在这些密度中,有一个密度的熵最大,它起着根本性的作用:我们称之为 fhmax。研究证明,受越来越多的矩约束的近似最大熵(MaxEnt)密度的熵收敛于 fhmax,其熵值可以是有限的,也可以是-∞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信