{"title":"National variability in soil organic carbon stock predictions: Impact of bulk density pedotransfer functions","authors":"","doi":"10.1016/j.iswcr.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate soil organic carbon storage (SOCS) estimation is crucial for sustaining ecosystem health and mitigating climate change impacts. This study investigated the accuracy and variability of SOCS predictions, focusing on the role of pedotransfer functions (PTFs) in estimating soil bulk density (BD). Utilizing a comprehensive dataset from the Korean Rural Development Administration (RDA database), which includes 516 soil horizons, we evaluated 36 widely-used BD PTFs, well-established formulas that estimate BD by considering soil properties, including soil organic carbon (SOC), soil organic matter (OM), sand, gravel, silt, and clay. These PTFs demonstrated varying levels of precision, with root mean squared errors (RMSE) ranging from 0.177 to 0.377 Mg m<sup>−3</sup> and coefficients of determination (R<sup>2</sup>) from 0.176 to 0.658; hence, the PTFs have been classified into excellent, moderate, and poor-performing groups for predicting BD. Further, a novel PTF based on an exponential function of SOC was developed, showing superior predictive power (R<sup>2</sup> = 0.73) compared to existing PTFs, using an independent validation dataset. Our findings reveal significant differences in SOCS predictions and observations among the PTFs, with a p-value <0.05. The highest concentrations of SOCS were noted in forest soils, considerably above the national average, highlighting the importance of tailored soil management practices to enhance carbon sequestration. These findings are crucial for refining PTF precision to improve the accuracy of national SOCS estimates, supporting effective land management and climate change mitigation strategies.</div></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"12 4","pages":"Pages 868-884"},"PeriodicalIF":7.3000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633924000248","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate soil organic carbon storage (SOCS) estimation is crucial for sustaining ecosystem health and mitigating climate change impacts. This study investigated the accuracy and variability of SOCS predictions, focusing on the role of pedotransfer functions (PTFs) in estimating soil bulk density (BD). Utilizing a comprehensive dataset from the Korean Rural Development Administration (RDA database), which includes 516 soil horizons, we evaluated 36 widely-used BD PTFs, well-established formulas that estimate BD by considering soil properties, including soil organic carbon (SOC), soil organic matter (OM), sand, gravel, silt, and clay. These PTFs demonstrated varying levels of precision, with root mean squared errors (RMSE) ranging from 0.177 to 0.377 Mg m−3 and coefficients of determination (R2) from 0.176 to 0.658; hence, the PTFs have been classified into excellent, moderate, and poor-performing groups for predicting BD. Further, a novel PTF based on an exponential function of SOC was developed, showing superior predictive power (R2 = 0.73) compared to existing PTFs, using an independent validation dataset. Our findings reveal significant differences in SOCS predictions and observations among the PTFs, with a p-value <0.05. The highest concentrations of SOCS were noted in forest soils, considerably above the national average, highlighting the importance of tailored soil management practices to enhance carbon sequestration. These findings are crucial for refining PTF precision to improve the accuracy of national SOCS estimates, supporting effective land management and climate change mitigation strategies.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research