Dan Li, Yue Hu, Baohua Yang, Zeren Fang, Yunyan Liang, Shuai He
{"title":"A novel transfer learning strategy for wind power prediction based on TimesNet-GRU architecture","authors":"Dan Li, Yue Hu, Baohua Yang, Zeren Fang, Yunyan Liang, Shuai He","doi":"10.1063/5.0200518","DOIUrl":null,"url":null,"abstract":"Currently, data-driven deep learning models are widely applied in the field of wind power prediction. However, when historical data are insufficient, deep learning models struggle to exhibit satisfactory predictive performance. In order to overcome the issue of limited training data for new wind farms, this study proposes a novel transfer learning strategy to address the challenge of less-sample learning in short-term wind power prediction. The research is conducted in two stages. In the pre-training stage, the TimesNet-GRU prediction model is established using data from a source wind farm. Parallel TimesNet modules are employed to extract multi-period features from various input feature sequences, followed by the extraction of long- and short-term features from the time series through gate recurrent unit (GRU). In the transfer learning stage, an effective transfer strategy is designed to freeze and retrain certain parameters of the TimesNet-GRU, thereby constructing a prediction model for the target wind farm. To validate the effectiveness of this approach, the results from testing with actual data from five wind farms in northwest China demonstrate that the proposed method exhibits significant advantages over models without transfer learning as explored in this study.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0200518","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, data-driven deep learning models are widely applied in the field of wind power prediction. However, when historical data are insufficient, deep learning models struggle to exhibit satisfactory predictive performance. In order to overcome the issue of limited training data for new wind farms, this study proposes a novel transfer learning strategy to address the challenge of less-sample learning in short-term wind power prediction. The research is conducted in two stages. In the pre-training stage, the TimesNet-GRU prediction model is established using data from a source wind farm. Parallel TimesNet modules are employed to extract multi-period features from various input feature sequences, followed by the extraction of long- and short-term features from the time series through gate recurrent unit (GRU). In the transfer learning stage, an effective transfer strategy is designed to freeze and retrain certain parameters of the TimesNet-GRU, thereby constructing a prediction model for the target wind farm. To validate the effectiveness of this approach, the results from testing with actual data from five wind farms in northwest China demonstrate that the proposed method exhibits significant advantages over models without transfer learning as explored in this study.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.