Precision engineering of high-performance Ni-rich layered cathodes with radially aligned microstructure through architectural regulation of precursors

IF 42.9 Q1 ELECTROCHEMISTRY
Xin Zhou , FeiFei Hong , Shuo Wang , Tian Zhao , Jiali Peng , Bin Zhang , Weifeng Fan , Wangyan Xing , Meihua Zuo , Ping Zhang , Yuhuan Zhou , Genpin Lv , Yanjun Zhong , Weibo Hua , Wei Xiang
{"title":"Precision engineering of high-performance Ni-rich layered cathodes with radially aligned microstructure through architectural regulation of precursors","authors":"Xin Zhou ,&nbsp;FeiFei Hong ,&nbsp;Shuo Wang ,&nbsp;Tian Zhao ,&nbsp;Jiali Peng ,&nbsp;Bin Zhang ,&nbsp;Weifeng Fan ,&nbsp;Wangyan Xing ,&nbsp;Meihua Zuo ,&nbsp;Ping Zhang ,&nbsp;Yuhuan Zhou ,&nbsp;Genpin Lv ,&nbsp;Yanjun Zhong ,&nbsp;Weibo Hua ,&nbsp;Wei Xiang","doi":"10.1016/j.esci.2024.100276","DOIUrl":null,"url":null,"abstract":"<div><div>Microstructure engineering serves as a potent approach to counteract the mechanical deterioration of Ni-rich layered cathodes, stemming from anisotropic strain during Li<sup>+</sup> (de)intercalation. However, a pressing challenge persists in devising a direct method for fabricating radially aligned cathodes utilizing oriented hydroxide precursors. In this study, we synthesized LiNi<sub>0.92</sub>Co<sub>0.04</sub>Mn<sub>0.04</sub>O<sub>2</sub> oxides boasting superior radially aligned, size-refined primary particles through a combination of strategic precipitation regulation and lithiation tuning. Elongated primary particles, achieved by stepwise control of ammonia concentration and pH during particle growth, facilitate the formation of radially aligned hydroxide precursor particles. Leveraging the size-refined and radially aligned primary particles, our prepared LiNi<sub>0.92</sub>Co<sub>0.04</sub>Mn<sub>0.04</sub>O<sub>2</sub> cathode exhibits a high discharge capacity of 229 ​mAh ​g<sup>−1</sup> ​at 0.05 C, alongside excellent cycle stability, retaining 93.3% capacity after 200 cycles at 0.5 C (30 ​°C) in a half cell, and 86.4% capacity after 1000 cycles at 1 C (30 ​°C) in a full cell. Revisiting the regulation from precursor to oxide underscores the significance of controlling primary particles to maximize size perpendicular to [001] and attain suitable size along [001] during precursor precipitation and high-temperature calcination, offering valuable insights for synthesizing high-performance Ni-rich cathodes.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 6","pages":"Article 100276"},"PeriodicalIF":42.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724000600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Microstructure engineering serves as a potent approach to counteract the mechanical deterioration of Ni-rich layered cathodes, stemming from anisotropic strain during Li+ (de)intercalation. However, a pressing challenge persists in devising a direct method for fabricating radially aligned cathodes utilizing oriented hydroxide precursors. In this study, we synthesized LiNi0.92Co0.04Mn0.04O2 oxides boasting superior radially aligned, size-refined primary particles through a combination of strategic precipitation regulation and lithiation tuning. Elongated primary particles, achieved by stepwise control of ammonia concentration and pH during particle growth, facilitate the formation of radially aligned hydroxide precursor particles. Leveraging the size-refined and radially aligned primary particles, our prepared LiNi0.92Co0.04Mn0.04O2 cathode exhibits a high discharge capacity of 229 ​mAh ​g−1 ​at 0.05 C, alongside excellent cycle stability, retaining 93.3% capacity after 200 cycles at 0.5 C (30 ​°C) in a half cell, and 86.4% capacity after 1000 cycles at 1 C (30 ​°C) in a full cell. Revisiting the regulation from precursor to oxide underscores the significance of controlling primary particles to maximize size perpendicular to [001] and attain suitable size along [001] during precursor precipitation and high-temperature calcination, offering valuable insights for synthesizing high-performance Ni-rich cathodes.

Abstract Image

通过对前驱体的结构调整,精确制造具有径向排列微结构的高性能富镍层状阴极
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信