Optimization of the betamethasone and dexamethasone dosing regimen during pregnancy: a combined placenta perfusion and pregnancy physiologically based pharmacokinetic modeling approach

IF 8.7 1区 医学 Q1 OBSTETRICS & GYNECOLOGY
Joyce E.M. Van Der Heijden MSc , Hedwig Van Hove MSc , Niki M. Van Elst BSc , Petra Van Den Broek BSc , Joris Van Drongelen MD, PhD , Hubertina C.J. Scheepers MD, PhD , Saskia N. De Wildt MD, PhD , Rick Greupink PharmD, PhD
{"title":"Optimization of the betamethasone and dexamethasone dosing regimen during pregnancy: a combined placenta perfusion and pregnancy physiologically based pharmacokinetic modeling approach","authors":"Joyce E.M. Van Der Heijden MSc ,&nbsp;Hedwig Van Hove MSc ,&nbsp;Niki M. Van Elst BSc ,&nbsp;Petra Van Den Broek BSc ,&nbsp;Joris Van Drongelen MD, PhD ,&nbsp;Hubertina C.J. Scheepers MD, PhD ,&nbsp;Saskia N. De Wildt MD, PhD ,&nbsp;Rick Greupink PharmD, PhD","doi":"10.1016/j.ajog.2024.05.012","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Antenatal betamethasone and dexamethasone are prescribed to women who are at high risk of premature birth to prevent neonatal respiratory distress syndrome (RDS). The current treatment regimens, effective to prevent neonatal RDS, may be suboptimal. Recently, concerns have been raised regarding possible adverse long-term neurological outcomes due to high fetal drug exposures. Data from nonhuman primates and sheep suggest maintaining a fetal plasma concentration above 1 ng/mL for 48 hours to retain efficacy, while avoiding undesirable high fetal plasma levels.</div></div><div><h3>Objective</h3><div>We aimed to re-evaluate the current betamethasone and dexamethasone dosing strategies to assess estimated fetal exposure and provide new dosing proposals that meet the efficacy target but avoid excessive peak exposures.</div></div><div><h3>Study design</h3><div>A pregnancy physiologically based pharmacokinetic (PBPK) model was used to predict fetal drug exposures. To allow prediction of the extent of betamethasone and dexamethasone exposure in the fetus, placenta perfusion experiments were conducted to determine placental transfer. Placental transfer rates were integrated in the PBPK model to predict fetal exposure and model performance was verified using published maternal and fetal pharmacokinetic data. The verified pregnancy PBPK models were then used to simulate alternative dosing regimens to establish a model-informed dose.</div></div><div><h3>Results</h3><div>Ex vivo data showed that both drugs extensively cross the placenta. For betamethasone 15.7±1.7% and for dexamethasone 14.4±1.5%, the initial maternal perfusate concentration reached the fetal circulations at the end of the 3-hour perfusion period. Pregnancy PBPK models that include these ex vivo-derived placental transfer rates accurately predicted maternal and fetal exposures resulting from current dosing regimens. The dose simulations suggest that for betamethasone intramuscular, a dose reduction from 2 dosages 11.4 mg, 24 hours apart, to 4 dosages 1.425 mg, 12 hours apart would avoid excessive peak exposures and still meet the fetal response threshold. For dexamethasone, the dose may be reduced from 4 times 6 mg every 12 hours to 8 times 1.5 mg every 6 hours.</div></div><div><h3>Conclusion</h3><div>A combined placenta perfusion and pregnancy PBPK modeling approach adequately predicted both maternal and fetal drug exposures of 2 antenatal corticosteroids (ACSs). Strikingly, our PBPK simulations suggest that drug doses might be reduced drastically to still meet earlier proposed efficacy targets and minimize peak exposures. We propose the provided model-informed dosing regimens are used to support further discussion on an updated ACS scheme and design of clinical trials to confirm the effectiveness and safety of lower doses.</div></div>","PeriodicalId":7574,"journal":{"name":"American journal of obstetrics and gynecology","volume":"232 2","pages":"Pages 228.e1-228.e9"},"PeriodicalIF":8.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of obstetrics and gynecology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0002937824005945","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Antenatal betamethasone and dexamethasone are prescribed to women who are at high risk of premature birth to prevent neonatal respiratory distress syndrome (RDS). The current treatment regimens, effective to prevent neonatal RDS, may be suboptimal. Recently, concerns have been raised regarding possible adverse long-term neurological outcomes due to high fetal drug exposures. Data from nonhuman primates and sheep suggest maintaining a fetal plasma concentration above 1 ng/mL for 48 hours to retain efficacy, while avoiding undesirable high fetal plasma levels.

Objective

We aimed to re-evaluate the current betamethasone and dexamethasone dosing strategies to assess estimated fetal exposure and provide new dosing proposals that meet the efficacy target but avoid excessive peak exposures.

Study design

A pregnancy physiologically based pharmacokinetic (PBPK) model was used to predict fetal drug exposures. To allow prediction of the extent of betamethasone and dexamethasone exposure in the fetus, placenta perfusion experiments were conducted to determine placental transfer. Placental transfer rates were integrated in the PBPK model to predict fetal exposure and model performance was verified using published maternal and fetal pharmacokinetic data. The verified pregnancy PBPK models were then used to simulate alternative dosing regimens to establish a model-informed dose.

Results

Ex vivo data showed that both drugs extensively cross the placenta. For betamethasone 15.7±1.7% and for dexamethasone 14.4±1.5%, the initial maternal perfusate concentration reached the fetal circulations at the end of the 3-hour perfusion period. Pregnancy PBPK models that include these ex vivo-derived placental transfer rates accurately predicted maternal and fetal exposures resulting from current dosing regimens. The dose simulations suggest that for betamethasone intramuscular, a dose reduction from 2 dosages 11.4 mg, 24 hours apart, to 4 dosages 1.425 mg, 12 hours apart would avoid excessive peak exposures and still meet the fetal response threshold. For dexamethasone, the dose may be reduced from 4 times 6 mg every 12 hours to 8 times 1.5 mg every 6 hours.

Conclusion

A combined placenta perfusion and pregnancy PBPK modeling approach adequately predicted both maternal and fetal drug exposures of 2 antenatal corticosteroids (ACSs). Strikingly, our PBPK simulations suggest that drug doses might be reduced drastically to still meet earlier proposed efficacy targets and minimize peak exposures. We propose the provided model-informed dosing regimens are used to support further discussion on an updated ACS scheme and design of clinical trials to confirm the effectiveness and safety of lower doses.
妊娠期倍他米松和地塞米松用药方案的优化:基于胎盘灌注和妊娠生理药代动力学模型的组合方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.90
自引率
7.10%
发文量
2237
审稿时长
47 days
期刊介绍: The American Journal of Obstetrics and Gynecology, known as "The Gray Journal," covers the entire spectrum of Obstetrics and Gynecology. It aims to publish original research (clinical and translational), reviews, opinions, video clips, podcasts, and interviews that contribute to understanding health and disease and have the potential to impact the practice of women's healthcare. Focus Areas: Diagnosis, Treatment, Prediction, and Prevention: The journal focuses on research related to the diagnosis, treatment, prediction, and prevention of obstetrical and gynecological disorders. Biology of Reproduction: AJOG publishes work on the biology of reproduction, including studies on reproductive physiology and mechanisms of obstetrical and gynecological diseases. Content Types: Original Research: Clinical and translational research articles. Reviews: Comprehensive reviews providing insights into various aspects of obstetrics and gynecology. Opinions: Perspectives and opinions on important topics in the field. Multimedia Content: Video clips, podcasts, and interviews. Peer Review Process: All submissions undergo a rigorous peer review process to ensure quality and relevance to the field of obstetrics and gynecology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信