{"title":"A new high-order shock-capturing TENO scheme combined with skew-symmetric-splitting method for compressible gas dynamics and turbulence simulation","authors":"Tian Liang , Lin Fu","doi":"10.1016/j.cpc.2024.109236","DOIUrl":null,"url":null,"abstract":"<div><p>The high-order shock-capturing scheme is one of the main building blocks for the simulation of the compressible fluid characterized by strong shockwaves and broadband length scales. However, the classical shock-capturing scheme fails to perform long-time stable and non-dissipative simulations since the quadratic invariants associated with the conservation equations cannot be conserved as a result of the inherent numerical dissipation. Additionally, the overall computational cost for classical shock-capturing schemes is quite expensive as a result of the time-consuming local characteristic decomposition and the nonlinear-weights computing process. In this work, based on a new efficient discontinuity indicator, which distinguishes the non-smooth high-wavenumber fluctuations and discontinuities from smooth scales in the wavenumber space, a paradigm of high-order shock-capturing scheme by recasting the non-dissipative skew-symmetric-splitting method with newly optimized dispersion property for smooth flow scales and invoking the nonlinear targeted ENO (TENO) schemes for non-smooth discontinuities is proposed. The resulting TENO-S scheme not only successfully performs long-time stable computations for smooth flows without numerical dissipation, but also recovers the robust shock-capturing capabilities with adaptive numerical dissipation. Without the necessity of parameter tuning case by case, extensive benchmark simulations involving a wide range of flow length scales and strong discontinuities demonstrate that the proposed TENO-S scheme performs significantly better than the straightforward deployment of WENO/TENO-family schemes with better spectral property and higher computational efficiency.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524001590","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The high-order shock-capturing scheme is one of the main building blocks for the simulation of the compressible fluid characterized by strong shockwaves and broadband length scales. However, the classical shock-capturing scheme fails to perform long-time stable and non-dissipative simulations since the quadratic invariants associated with the conservation equations cannot be conserved as a result of the inherent numerical dissipation. Additionally, the overall computational cost for classical shock-capturing schemes is quite expensive as a result of the time-consuming local characteristic decomposition and the nonlinear-weights computing process. In this work, based on a new efficient discontinuity indicator, which distinguishes the non-smooth high-wavenumber fluctuations and discontinuities from smooth scales in the wavenumber space, a paradigm of high-order shock-capturing scheme by recasting the non-dissipative skew-symmetric-splitting method with newly optimized dispersion property for smooth flow scales and invoking the nonlinear targeted ENO (TENO) schemes for non-smooth discontinuities is proposed. The resulting TENO-S scheme not only successfully performs long-time stable computations for smooth flows without numerical dissipation, but also recovers the robust shock-capturing capabilities with adaptive numerical dissipation. Without the necessity of parameter tuning case by case, extensive benchmark simulations involving a wide range of flow length scales and strong discontinuities demonstrate that the proposed TENO-S scheme performs significantly better than the straightforward deployment of WENO/TENO-family schemes with better spectral property and higher computational efficiency.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.