Hye-Jin Tak , Joo-Won Moon , Jae-Young Kim , Sang-Hoon Kang , Sang-Hwy Lee
{"title":"Transition of endochondral bone formation at the normal and botulinum-treated mandibular condyle of growing juvenile rat","authors":"Hye-Jin Tak , Joo-Won Moon , Jae-Young Kim , Sang-Hoon Kang , Sang-Hwy Lee","doi":"10.1016/j.archoralbio.2024.105999","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>The aim of this study was to understand the temporal and spatial distribution of canonical endochondral ossification (CEO) and non-canonical endochondral ossification (NCEO) of the normal growing rat condyle, and to evaluate their histomorphological changes following the simultaneous hypotrophy of the unilateral masticatory closing muscles with botulinum toxin (BTX).</p></div><div><h3>Design</h3><p>46 rats at postnatal 4 weeks were used for the experiment and euthanized at postnatal 4, 8, and 16 weeks. The right masticatory muscles of rats in experimental group were injected with BTX, the left being injected with saline as a control. The samples were evaluated using 3D morphometric, histological, and immunohistochemical analysis with three-dimensional regional mapping of endochondral ossifications.</p></div><div><h3>Results</h3><p>The results showed that condylar endochondral ossification changed from CEO to NCEO at the main articulating surface during the experimental period and that the BTX-treated condyle presented a retroclined smaller condyle with an anteriorly-shifted narrower articulating surface. This articulating region showed a thinner layer of the endochondral cells, and a compact distribution of flattened cells. These were related to the load concentration, decreased cellular proliferation with thin cellular layers, reduced extracellular matrix, increased cellular differentiation toward the osteoblastic bone formation, and accelerated transition of the ossification types from CEO to NCEO.</p></div><div><h3>Conclusion</h3><p>The results suggest that endochondral ossification under loading tended to show more NCEO, and that masticatory muscular hypofunction by BTX had deleterious effects on endochondral bone formation and changed the condylar growth vector, resulting in a retroclined, smaller, asymmetrical, and deformed condyle with thin cartilage.</p></div>","PeriodicalId":8288,"journal":{"name":"Archives of oral biology","volume":"164 ","pages":"Article 105999"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of oral biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003996924001201","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
The aim of this study was to understand the temporal and spatial distribution of canonical endochondral ossification (CEO) and non-canonical endochondral ossification (NCEO) of the normal growing rat condyle, and to evaluate their histomorphological changes following the simultaneous hypotrophy of the unilateral masticatory closing muscles with botulinum toxin (BTX).
Design
46 rats at postnatal 4 weeks were used for the experiment and euthanized at postnatal 4, 8, and 16 weeks. The right masticatory muscles of rats in experimental group were injected with BTX, the left being injected with saline as a control. The samples were evaluated using 3D morphometric, histological, and immunohistochemical analysis with three-dimensional regional mapping of endochondral ossifications.
Results
The results showed that condylar endochondral ossification changed from CEO to NCEO at the main articulating surface during the experimental period and that the BTX-treated condyle presented a retroclined smaller condyle with an anteriorly-shifted narrower articulating surface. This articulating region showed a thinner layer of the endochondral cells, and a compact distribution of flattened cells. These were related to the load concentration, decreased cellular proliferation with thin cellular layers, reduced extracellular matrix, increased cellular differentiation toward the osteoblastic bone formation, and accelerated transition of the ossification types from CEO to NCEO.
Conclusion
The results suggest that endochondral ossification under loading tended to show more NCEO, and that masticatory muscular hypofunction by BTX had deleterious effects on endochondral bone formation and changed the condylar growth vector, resulting in a retroclined, smaller, asymmetrical, and deformed condyle with thin cartilage.
期刊介绍:
Archives of Oral Biology is an international journal which aims to publish papers of the highest scientific quality in the oral and craniofacial sciences. The journal is particularly interested in research which advances knowledge in the mechanisms of craniofacial development and disease, including:
Cell and molecular biology
Molecular genetics
Immunology
Pathogenesis
Cellular microbiology
Embryology
Syndromology
Forensic dentistry