{"title":"Deep-reinforcement-learning-based hull form optimization method for stealth submarine design","authors":"Sang-Jae Yeo , Suk-Yoon Hong , Jee-Hun Song","doi":"10.1016/j.ijnaoe.2024.100595","DOIUrl":null,"url":null,"abstract":"<div><p>The stealth performance of submarines is closely related to their hull forms. In this study, an optimization method based on Deep Reinforcement Learning (DRL) was developed to design submarine hull forms, aimed at maximizing the stealth performance. The DRL optimization technique relied on the decision-making process of an agent for determining actions resulting in changes in the hull form, using stealth performance as the reward. The stealth performance of the submarine was evaluated through a Target Strength (TS) analysis model. Additionally, functional constraints of the examined hull forms were implemented in the optimization process, including geometric constraints related to the hull form and dynamic stability constraints pertaining to the hydrodynamic maneuvering characteristics. The TS of the final optimized hull form was 6.5 dB lower than that of the base model, indicating remarkable stealth performance and improved maneuverability. These results validated the effectiveness of the proposed DRL-based optimization method.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"16 ","pages":"Article 100595"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2092678224000141/pdfft?md5=de99f5df3373272caf85e17933b9e3b1&pid=1-s2.0-S2092678224000141-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678224000141","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
The stealth performance of submarines is closely related to their hull forms. In this study, an optimization method based on Deep Reinforcement Learning (DRL) was developed to design submarine hull forms, aimed at maximizing the stealth performance. The DRL optimization technique relied on the decision-making process of an agent for determining actions resulting in changes in the hull form, using stealth performance as the reward. The stealth performance of the submarine was evaluated through a Target Strength (TS) analysis model. Additionally, functional constraints of the examined hull forms were implemented in the optimization process, including geometric constraints related to the hull form and dynamic stability constraints pertaining to the hydrodynamic maneuvering characteristics. The TS of the final optimized hull form was 6.5 dB lower than that of the base model, indicating remarkable stealth performance and improved maneuverability. These results validated the effectiveness of the proposed DRL-based optimization method.
期刊介绍:
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.