Schauerella fraxinea gen. nov., sp. nov., a bacterial species that colonises ash trees tolerant to dieback caused by Hymenoscyphus fraxineus

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Undine Behrendt , Valentin Burghard , Sonja Wende , Kristina Ulrich , Jacqueline Wolf , Meina Neumann-Schaal , Andreas Ulrich
{"title":"Schauerella fraxinea gen. nov., sp. nov., a bacterial species that colonises ash trees tolerant to dieback caused by Hymenoscyphus fraxineus","authors":"Undine Behrendt ,&nbsp;Valentin Burghard ,&nbsp;Sonja Wende ,&nbsp;Kristina Ulrich ,&nbsp;Jacqueline Wolf ,&nbsp;Meina Neumann-Schaal ,&nbsp;Andreas Ulrich","doi":"10.1016/j.syapm.2024.126516","DOIUrl":null,"url":null,"abstract":"<div><p>The tolerance of ash trees against the pathogen <em>Hymenoscyphus fraxineus</em> seems to be associated with the occurrence of specific microbial taxa on leaves. A group of bacterial isolates, primarily identified on tolerant trees, was investigated with regard to their taxonomic classification and their potential to suppress the ash dieback pathogen. Examination of OGRI values revealed a separate species position. A phylogenomic analysis, based on orthologous and marker genes, indicated a separate genus position along with the species <em>Achromobacter aestuarii</em>. Furthermore, analysis of the ratio of average nucleotide identities and genome alignment fractions demonstrated genomic dissimilarities typically observed for inter-genera comparisons within this family. As a result of these investigations, the strains are considered to represent a separate species within a new genus, for which the name <em>Schauerella fraxinea</em> gen. nov., sp. nov. is proposed, with the type strain B3P038<sup>T</sup> (=LMG 33092 <sup>T</sup> = DSM 115926 <sup>T</sup>). Additionally, a reclassification of the species <em>Achromobacter aestuarii</em> as <em>Schauerella aestuarii</em> comb. nov. is proposed.</p><p>In a co-cultivation assay, the strains were able to inhibit the growth of a <em>H. fraxineus</em> strain. Accordingly, a functional analysis of the genome of <em>S. fraxinea</em> B3P038<sup>T</sup> revealed genes mediating the production of antifungal substances. This potential, combined with the prevalent presence in the phyllosphere of tolerant ash trees, makes this group interesting for an inoculation experiment with the aim of controlling the pathogen in an integrative approach. For future field trials, a strain-specific qPCR system was developed to establish an efficient method for monitoring the inoculation success.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0723202024000304/pdfft?md5=863b75ac7145c8f11e191c95b97b3c66&pid=1-s2.0-S0723202024000304-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723202024000304","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The tolerance of ash trees against the pathogen Hymenoscyphus fraxineus seems to be associated with the occurrence of specific microbial taxa on leaves. A group of bacterial isolates, primarily identified on tolerant trees, was investigated with regard to their taxonomic classification and their potential to suppress the ash dieback pathogen. Examination of OGRI values revealed a separate species position. A phylogenomic analysis, based on orthologous and marker genes, indicated a separate genus position along with the species Achromobacter aestuarii. Furthermore, analysis of the ratio of average nucleotide identities and genome alignment fractions demonstrated genomic dissimilarities typically observed for inter-genera comparisons within this family. As a result of these investigations, the strains are considered to represent a separate species within a new genus, for which the name Schauerella fraxinea gen. nov., sp. nov. is proposed, with the type strain B3P038T (=LMG 33092 T = DSM 115926 T). Additionally, a reclassification of the species Achromobacter aestuarii as Schauerella aestuarii comb. nov. is proposed.

In a co-cultivation assay, the strains were able to inhibit the growth of a H. fraxineus strain. Accordingly, a functional analysis of the genome of S. fraxinea B3P038T revealed genes mediating the production of antifungal substances. This potential, combined with the prevalent presence in the phyllosphere of tolerant ash trees, makes this group interesting for an inoculation experiment with the aim of controlling the pathogen in an integrative approach. For future field trials, a strain-specific qPCR system was developed to establish an efficient method for monitoring the inoculation success.

Schauerella fraxinea gen.
白蜡树对病原 Hymenoscyphus fraxineus 的耐受性似乎与叶片上出现的特定微生物类群有关。研究人员对一组细菌分离物(主要在耐受性强的树木上发现)进行了调查,以了解它们的分类学分类及其抑制白蜡枯病原体的潜力。对 OGRI 值的研究发现了一个独立的物种位置。基于同源基因和标记基因的系统发生组分析表明,Achromobacter aestuarii 和 Achromobacter aestuarii 属于不同的属。此外,对平均核苷酸相同度比率和基因组比对分数的分析表明,在该科属间比较中通常会观察到基因组差异。根据这些研究结果,认为这些菌株代表了一个新属中的一个独立种,并将其命名为 Schauerella fraxinea gen.此外,还建议将 Achromobacter aestuarii 重新分类为 Schauerella aestuarii comb.因此,对 S. fraxinea B3P038T 基因组的功能分析发现了介导产生抗真菌物质的基因。这种潜力,再加上白蜡树叶球中普遍存在的耐受性,使该菌株组对接种实验产生了兴趣,目的是以综合方法控制病原体。针对未来的实地试验,我们开发了一种菌株特异性 qPCR 系统,以建立一种监测接种成功率的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信