Analyzing co-infection dynamics: A mathematical approach using fractional order modeling and Laplace-Adomian decomposition

Q1 Social Sciences
Isa Abdullahi Baba , Fathalla A. Rihan , Evren Hincal
{"title":"Analyzing co-infection dynamics: A mathematical approach using fractional order modeling and Laplace-Adomian decomposition","authors":"Isa Abdullahi Baba ,&nbsp;Fathalla A. Rihan ,&nbsp;Evren Hincal","doi":"10.1016/j.jobb.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>The co-infection of HIV and COVID-19 is a pressing health concern, carrying substantial potential consequences. This study focuses on the vital task of comprehending the dynamics of HIV-COVID-19 co-infection, a fundamental step in formulating efficacious control strategies and optimizing healthcare approaches. Here, we introduce an innovative mathematical model grounded in Caputo fractional order differential equations, specifically designed to encapsulate the intricate dynamics of co-infection. This model encompasses multiple critical facets: the transmission dynamics of both HIV and COVID-19, the host’s immune responses, and the influence of treatment interventions. Our approach embraces the complexity of these factors to offer an exhaustive portrayal of co-infection dynamics. To tackle the fractional order model, we employ the Laplace-Adomian decomposition method, a potent mathematical tool for approximating solutions in fractional order differential equations. Utilizing this technique, we simulate the intricate interactions between these variables, yielding profound insights into the propagation of co-infection. Notably, we identify pivotal contributors to its advancement. In addition, we conduct a meticulous analysis of the convergence properties inherent in the series solutions acquired through the Laplace-Adomian decomposition method. This examination assures the reliability and accuracy of our mathematical methodology in approximating solutions. Our findings hold significant implications for the formulation of effective control strategies. Policymakers, healthcare professionals, and public health authorities will benefit from this research as they endeavor to curtail the proliferation and impact of HIV-COVID-19 co-infection.</p></div>","PeriodicalId":52875,"journal":{"name":"Journal of Biosafety and Biosecurity","volume":"6 2","pages":"Pages 113-124"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588933824000207/pdfft?md5=5e953fc571289722d8dcd925b1ff0a92&pid=1-s2.0-S2588933824000207-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biosafety and Biosecurity","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588933824000207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The co-infection of HIV and COVID-19 is a pressing health concern, carrying substantial potential consequences. This study focuses on the vital task of comprehending the dynamics of HIV-COVID-19 co-infection, a fundamental step in formulating efficacious control strategies and optimizing healthcare approaches. Here, we introduce an innovative mathematical model grounded in Caputo fractional order differential equations, specifically designed to encapsulate the intricate dynamics of co-infection. This model encompasses multiple critical facets: the transmission dynamics of both HIV and COVID-19, the host’s immune responses, and the influence of treatment interventions. Our approach embraces the complexity of these factors to offer an exhaustive portrayal of co-infection dynamics. To tackle the fractional order model, we employ the Laplace-Adomian decomposition method, a potent mathematical tool for approximating solutions in fractional order differential equations. Utilizing this technique, we simulate the intricate interactions between these variables, yielding profound insights into the propagation of co-infection. Notably, we identify pivotal contributors to its advancement. In addition, we conduct a meticulous analysis of the convergence properties inherent in the series solutions acquired through the Laplace-Adomian decomposition method. This examination assures the reliability and accuracy of our mathematical methodology in approximating solutions. Our findings hold significant implications for the formulation of effective control strategies. Policymakers, healthcare professionals, and public health authorities will benefit from this research as they endeavor to curtail the proliferation and impact of HIV-COVID-19 co-infection.

共同感染动态分析:使用分数阶建模和拉普拉斯-阿多米分解的数学方法
艾滋病病毒(HIV)和 COVID-19 的合并感染是一个紧迫的健康问题,可能带来严重后果。本研究的重点是理解 HIV-COVID-19 协同感染的动态变化,这是制定有效控制策略和优化医疗保健方法的基本步骤。在此,我们引入了一个以卡普托分数阶微分方程为基础的创新数学模型,该模型专为囊括合并感染的复杂动态而设计。该模型包含多个关键方面:HIV 和 COVID-19 的传播动态、宿主的免疫反应以及治疗干预措施的影响。我们的方法考虑到了这些因素的复杂性,从而详尽地描绘了合并感染的动态过程。为了处理分数阶模型,我们采用了拉普拉斯-阿多米分解法,这是一种逼近分数阶微分方程解的有效数学工具。利用这一技术,我们模拟了这些变量之间错综复杂的相互作用,从而对共同感染的传播有了深刻的认识。值得注意的是,我们确定了导致其发展的关键因素。此外,我们还对通过拉普拉斯-阿多米分解法获得的序列解的固有收敛特性进行了细致分析。这项研究确保了我们的数学方法在近似求解方面的可靠性和准确性。我们的研究结果对制定有效的控制策略具有重要意义。政策制定者、医疗保健专业人员和公共卫生机构将受益于这项研究,因为他们正在努力遏制 HIV-COVID-19 合并感染的扩散和影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biosafety and Biosecurity
Journal of Biosafety and Biosecurity Social Sciences-Linguistics and Language
CiteScore
6.00
自引率
0.00%
发文量
20
审稿时长
41 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信