Data driven AI (artificial intelligence) detection furnish economic pathways for microplastics

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Mamta Latwal, Shefali Arora, K.S.R. Murthy
{"title":"Data driven AI (artificial intelligence) detection furnish economic pathways for microplastics","authors":"Mamta Latwal,&nbsp;Shefali Arora,&nbsp;K.S.R. Murthy","doi":"10.1016/j.jconhyd.2024.104365","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics pollution is killing human life, contaminating our oceans, and lasting for longer in the environment than it is used. Microplastics have contaminated the geochemistry and turned the water system into trash barrel. Its detection in water is easy in comparison to soil and air so the attention of researchers is focused on it for now. Being very small in size, microplastics can easily cross the water filtration system and end up in the ocean or lakes and become the prospective challenge to aquatic life. This review piece provides the hot research theme and current advances in the field of microplastics and their eradication through the virtual world of artificial intelligence (AI) <em>because Microplastics have confrontation with clean water tactics.</em></p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"264 ","pages":"Article 104365"},"PeriodicalIF":3.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016977222400069X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastics pollution is killing human life, contaminating our oceans, and lasting for longer in the environment than it is used. Microplastics have contaminated the geochemistry and turned the water system into trash barrel. Its detection in water is easy in comparison to soil and air so the attention of researchers is focused on it for now. Being very small in size, microplastics can easily cross the water filtration system and end up in the ocean or lakes and become the prospective challenge to aquatic life. This review piece provides the hot research theme and current advances in the field of microplastics and their eradication through the virtual world of artificial intelligence (AI) because Microplastics have confrontation with clean water tactics.

数据驱动的 AI(人工智能)检测为微塑料提供经济途径
微塑料污染正在扼杀人类的生命,污染我们的海洋,并且在环境中的持续时间比使用时间更长。微塑料污染了地球化学,使水系变成了垃圾桶。与土壤和空气相比,在水中检测微塑料非常容易,因此研究人员目前将注意力集中在微塑料上。由于体积非常小,微塑料很容易穿过水过滤系统,最终进入海洋或湖泊,成为对水生生物的潜在挑战。这篇综述文章介绍了微塑料领域的热点研究课题和当前的研究进展,以及通过人工智能(AI)的虚拟世界消除微塑料的研究进展,因为微塑料与洁净水战术是对立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of contaminant hydrology
Journal of contaminant hydrology 环境科学-地球科学综合
CiteScore
6.80
自引率
2.80%
发文量
129
审稿时长
68 days
期刊介绍: The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide). The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信