Transformation of quinoa seeds to nanoscale flour by ball milling: Influence of ball diameter and milling time on the particle sizing, microstructure, and rheology
Jasim Ahmed , Abdullah Alazemi , Poornima Ponnumani , Bini T. B. , Mahmoud Soliman , Lidia Emmanuval , Nickey M. Thomas
{"title":"Transformation of quinoa seeds to nanoscale flour by ball milling: Influence of ball diameter and milling time on the particle sizing, microstructure, and rheology","authors":"Jasim Ahmed , Abdullah Alazemi , Poornima Ponnumani , Bini T. B. , Mahmoud Soliman , Lidia Emmanuval , Nickey M. Thomas","doi":"10.1016/j.jfoodeng.2024.112127","DOIUrl":null,"url":null,"abstract":"<div><p>Among various size reduction techniques, high-energy ball milling is one of the most attractive means for plant-based foods. The objectives of the work were to investigate the influence of ball diameters (3, 6, and 13 mm) and milling time (2, 4, and 6 h) on particle size and microstructural properties of quinoa flours. Particle size analysis demonstrated that ball-milled particles were mostly in the range of nanoscales (122–295 nm). A longer milling time with larger balls significantly increased the particles to microscale (3.58 μm). The scanning electron microscopy displayed the conversion of quinoa starch granules into flakes after ball milling, however, the X-ray diffraction crystallinity peak observed at a 2θ value of 19–20° did not change. The AFM roughness parameters, arithmetic and squared mean heights of flours increased with increasing ball diameters. These results provided new insights for the application of ball milling, in particular in functional foods and pickering emulsion.</p></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877424001936","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Among various size reduction techniques, high-energy ball milling is one of the most attractive means for plant-based foods. The objectives of the work were to investigate the influence of ball diameters (3, 6, and 13 mm) and milling time (2, 4, and 6 h) on particle size and microstructural properties of quinoa flours. Particle size analysis demonstrated that ball-milled particles were mostly in the range of nanoscales (122–295 nm). A longer milling time with larger balls significantly increased the particles to microscale (3.58 μm). The scanning electron microscopy displayed the conversion of quinoa starch granules into flakes after ball milling, however, the X-ray diffraction crystallinity peak observed at a 2θ value of 19–20° did not change. The AFM roughness parameters, arithmetic and squared mean heights of flours increased with increasing ball diameters. These results provided new insights for the application of ball milling, in particular in functional foods and pickering emulsion.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.