Computational systems biology of cellular processes in the human lymph node

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sonja Scharf , Jörg Ackermann , Patrick Wurzel , Martin-Leo Hansmann , Ina Koch
{"title":"Computational systems biology of cellular processes in the human lymph node","authors":"Sonja Scharf ,&nbsp;Jörg Ackermann ,&nbsp;Patrick Wurzel ,&nbsp;Martin-Leo Hansmann ,&nbsp;Ina Koch","doi":"10.1016/j.coisb.2024.100518","DOIUrl":null,"url":null,"abstract":"<div><p>The human immune system is determined by the functionality of the human lymph node. With the use of high-throughput techniques in clinical diagnostics, a large number of data is currently collected. The new data on the spatiotemporal organization of cells offer new possibilities to build a mathematical model of the human lymph node - a <em>virtual lymph node</em>. The virtual lymph node can be applied to simulate drug responses and may be used in clinical diagnosis. Here, we review mathematical models of the human lymph node from the viewpoint of cellular processes. Starting with classical methods, such as systems of differential equations, we discuss the values of different levels of abstraction and methods in the range of artificial intelligence techniques formalism.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310024000143/pdfft?md5=66c9fec4f5325a388d754ce533b52cf6&pid=1-s2.0-S2452310024000143-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310024000143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The human immune system is determined by the functionality of the human lymph node. With the use of high-throughput techniques in clinical diagnostics, a large number of data is currently collected. The new data on the spatiotemporal organization of cells offer new possibilities to build a mathematical model of the human lymph node - a virtual lymph node. The virtual lymph node can be applied to simulate drug responses and may be used in clinical diagnosis. Here, we review mathematical models of the human lymph node from the viewpoint of cellular processes. Starting with classical methods, such as systems of differential equations, we discuss the values of different levels of abstraction and methods in the range of artificial intelligence techniques formalism.

Abstract Image

人体淋巴结细胞过程的计算系统生物学
人体淋巴结的功能决定了人体的免疫系统。随着高通量技术在临床诊断中的应用,目前已收集到大量数据。有关细胞时空组织的新数据为建立人体淋巴结的数学模型--虚拟淋巴结--提供了新的可能性。虚拟淋巴结可用于模拟药物反应,也可用于临床诊断。在此,我们从细胞过程的角度回顾人体淋巴结的数学模型。从微分方程系统等经典方法开始,我们讨论了人工智能技术形式主义范围内不同抽象程度和方法的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信