Tissue engineering of outer blood retina barrier for therapeutic development

IF 4.7 3区 工程技术 Q2 ENGINEERING, BIOMEDICAL
Christopher Hampton , Kapil Bharti , Min Jae Song
{"title":"Tissue engineering of outer blood retina barrier for therapeutic development","authors":"Christopher Hampton ,&nbsp;Kapil Bharti ,&nbsp;Min Jae Song","doi":"10.1016/j.cobme.2024.100538","DOIUrl":null,"url":null,"abstract":"<div><p>Age related macular degeneration and other retinal degenerative disorders are characterized by disruption of the outer blood retinal barrier (oBRB) with subsequent ischemia, neovascularization, and atrophy. Despite the treatment advances, there remains no curative therapy, and no treatment targeted at regenerating native-like tissue for patients with late stages of the disease. Here we present advances in tissue engineering, focusing on bioprinting methods of generating tissue allowing for safe and reliable production of oBRB as well as tissue reprogramming with induced pluripotent stem cells for transplantation. We compare these approaches to organ-on-a-chip models for studying the dynamic nature of physiologic conditions. Highlighted within this review are studies that employ good manufacturing practices and use clinical grade methods that minimize potential risk to patients. Lastly, we illustrate recent clinical applications demonstrating both safety and efficacy for direct patient use. These advances provide an avenue for drug discovery and ultimately transplantation.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"31 ","pages":"Article 100538"},"PeriodicalIF":4.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451124000187","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Age related macular degeneration and other retinal degenerative disorders are characterized by disruption of the outer blood retinal barrier (oBRB) with subsequent ischemia, neovascularization, and atrophy. Despite the treatment advances, there remains no curative therapy, and no treatment targeted at regenerating native-like tissue for patients with late stages of the disease. Here we present advances in tissue engineering, focusing on bioprinting methods of generating tissue allowing for safe and reliable production of oBRB as well as tissue reprogramming with induced pluripotent stem cells for transplantation. We compare these approaches to organ-on-a-chip models for studying the dynamic nature of physiologic conditions. Highlighted within this review are studies that employ good manufacturing practices and use clinical grade methods that minimize potential risk to patients. Lastly, we illustrate recent clinical applications demonstrating both safety and efficacy for direct patient use. These advances provide an avenue for drug discovery and ultimately transplantation.

用于治疗开发的外层血视网膜屏障组织工程学
年龄相关性黄斑变性和其他视网膜变性疾病的特点是视网膜外血屏障(oBRB)被破坏,随之而来的是缺血、新生血管形成和萎缩。尽管在治疗方面取得了进展,但目前仍没有根治性疗法,也没有针对疾病晚期患者的类原生组织再生疗法。在此,我们介绍了组织工程学的进展,重点是生物打印生成组织的方法,这种方法可以安全可靠地生产oBRB,并利用诱导多能干细胞对组织进行重编程,以便进行移植。我们将这些方法与用于研究生理条件动态性质的芯片器官模型进行了比较。本综述重点介绍了采用良好生产规范和临床级方法的研究,这些方法最大限度地降低了对患者的潜在风险。最后,我们说明了最近的临床应用,这些应用证明了直接用于患者的安全性和有效性。这些进展为药物发现和最终移植提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Biomedical Engineering
Current Opinion in Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
2.60%
发文量
59
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信