{"title":"A Single-Sized Metasurface for Image Steganography and Multi-Key Information Encryption","authors":"","doi":"10.1016/j.eng.2024.04.015","DOIUrl":null,"url":null,"abstract":"<div><div>With the escalating flow of information and digital communication, information security has become an increasingly important issue. Traditional cryptographic methods are being threatened by advancing progress in computing, while physical encryption methods are favored as a viable and compelling avenue. Metasurfaces, which are known for their extraordinary ability to manipulate optical parameters at the nanoscale, exhibit significant potential for the revolution of optical devices, making them a highly promising candidate for optical encryption applications. Here, a single-sized metasurface with four independent channels is proposed for conducting steganography and multi-key information encryption. More specifically, plaintext is transformed into a ciphertext image, which is encoded into a metasurface, while the decryption key is discretely integrated into another channel within the same metasurface. Two different keys for steganographic image unveiling are also encoded into the metasurface and can be retrieved with different channels and spatial positions. This distributed multi-key encryption approach can enhance security, while strategically distributing images across distinct spatial zones serves as an additional measure to reduce the risk of information leakage. This minimalist designed metasurface, with its advantages of high information density and robust security, holds promise across applications including portable encryption, high-camouflaged image display, and high-density optical storage.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"41 ","pages":"Pages 61-70"},"PeriodicalIF":10.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924002492","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the escalating flow of information and digital communication, information security has become an increasingly important issue. Traditional cryptographic methods are being threatened by advancing progress in computing, while physical encryption methods are favored as a viable and compelling avenue. Metasurfaces, which are known for their extraordinary ability to manipulate optical parameters at the nanoscale, exhibit significant potential for the revolution of optical devices, making them a highly promising candidate for optical encryption applications. Here, a single-sized metasurface with four independent channels is proposed for conducting steganography and multi-key information encryption. More specifically, plaintext is transformed into a ciphertext image, which is encoded into a metasurface, while the decryption key is discretely integrated into another channel within the same metasurface. Two different keys for steganographic image unveiling are also encoded into the metasurface and can be retrieved with different channels and spatial positions. This distributed multi-key encryption approach can enhance security, while strategically distributing images across distinct spatial zones serves as an additional measure to reduce the risk of information leakage. This minimalist designed metasurface, with its advantages of high information density and robust security, holds promise across applications including portable encryption, high-camouflaged image display, and high-density optical storage.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.