Understanding Cognitive Behavioral Therapy for Psychosis Through the Predictive Coding Framework

IF 4 Q2 NEUROSCIENCES
Julia M. Sheffield , Aaron P. Brinen , Brandee Feola , Stephan Heckers , Philip R. Corlett
{"title":"Understanding Cognitive Behavioral Therapy for Psychosis Through the Predictive Coding Framework","authors":"Julia M. Sheffield ,&nbsp;Aaron P. Brinen ,&nbsp;Brandee Feola ,&nbsp;Stephan Heckers ,&nbsp;Philip R. Corlett","doi":"10.1016/j.bpsgos.2024.100333","DOIUrl":null,"url":null,"abstract":"<div><p>Psychological treatments for persecutory delusions, particularly cognitive behavioral therapy for psychosis, are efficacious; however, mechanistic theories explaining why they work rarely bridge to the level of cognitive neuroscience. Predictive coding, a general brain processing theory rooted in cognitive and computational neuroscience, has increasing experimental support for explaining symptoms of psychosis, including the formation and maintenance of delusions. Here, we describe recent advances in cognitive behavioral therapy for psychosis–based psychotherapy for persecutory delusions, which targets specific psychological processes at the computational level of information processing. We outline how Bayesian learning models employed in predictive coding are superior to simple associative learning models for understanding the impact of cognitive behavioral interventions at the algorithmic level. We review hierarchical predictive coding as an account of belief updating rooted in prediction error signaling. We examine how this process is abnormal in psychotic disorders, garnering noisy sensory data that is made sense of through the development of overly strong delusional priors. We argue that effective cognitive behavioral therapy for psychosis systematically targets the way sensory data are selected, experienced, and interpreted, thus allowing for the strengthening of alternative beliefs. Finally, future directions based on these arguments are discussed.</p></div>","PeriodicalId":72373,"journal":{"name":"Biological psychiatry global open science","volume":"4 4","pages":"Article 100333"},"PeriodicalIF":4.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667174324000466/pdfft?md5=8d05befc55ed219b58624ffd486006d1&pid=1-s2.0-S2667174324000466-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological psychiatry global open science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667174324000466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Psychological treatments for persecutory delusions, particularly cognitive behavioral therapy for psychosis, are efficacious; however, mechanistic theories explaining why they work rarely bridge to the level of cognitive neuroscience. Predictive coding, a general brain processing theory rooted in cognitive and computational neuroscience, has increasing experimental support for explaining symptoms of psychosis, including the formation and maintenance of delusions. Here, we describe recent advances in cognitive behavioral therapy for psychosis–based psychotherapy for persecutory delusions, which targets specific psychological processes at the computational level of information processing. We outline how Bayesian learning models employed in predictive coding are superior to simple associative learning models for understanding the impact of cognitive behavioral interventions at the algorithmic level. We review hierarchical predictive coding as an account of belief updating rooted in prediction error signaling. We examine how this process is abnormal in psychotic disorders, garnering noisy sensory data that is made sense of through the development of overly strong delusional priors. We argue that effective cognitive behavioral therapy for psychosis systematically targets the way sensory data are selected, experienced, and interpreted, thus allowing for the strengthening of alternative beliefs. Finally, future directions based on these arguments are discussed.

通过预测编码框架了解精神病认知行为疗法 (CBTp)
针对迫害妄想症的心理疗法,尤其是针对精神病的认知行为疗法,疗效显著;然而,解释这些疗法为何有效的机理理论却很少达到认知神经科学的水平。预测编码是一种植根于认知和计算神经科学的通用大脑处理理论,在解释精神病症状(包括妄想的形成和维持)方面得到了越来越多的实验支持。在此,我们将介绍基于认知行为疗法的精神病心理疗法的最新进展,该疗法针对的是信息处理计算层面的特定心理过程。我们概述了在预测编码中采用的贝叶斯学习模型如何优于简单的联想学习模型,从而在算法层面上理解认知行为干预的影响。我们回顾了分层预测编码,它是对植根于预测错误信号的信念更新的一种解释。我们研究了这一过程如何在精神障碍中出现异常,如何通过发展过于强烈的妄想先验来获取嘈杂的感官数据。我们认为,治疗精神病的有效认知行为疗法可以系统地针对感官数据的选择、体验和解释方式,从而强化替代性信念。最后,我们基于这些论点讨论了未来的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological psychiatry global open science
Biological psychiatry global open science Psychiatry and Mental Health
CiteScore
4.00
自引率
0.00%
发文量
0
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信