Utilizing convolutional neural networks (CNN) and U-Net architecture for precise crop and weed segmentation in agricultural imagery: A deep learning approach

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Mughair Aslam Bhatti , M.S. Syam , Huafeng Chen , Yurong Hu , Li Wai Keung , Zeeshan Zeeshan , Yasser A. Ali , Nadia Sarhan
{"title":"Utilizing convolutional neural networks (CNN) and U-Net architecture for precise crop and weed segmentation in agricultural imagery: A deep learning approach","authors":"Mughair Aslam Bhatti ,&nbsp;M.S. Syam ,&nbsp;Huafeng Chen ,&nbsp;Yurong Hu ,&nbsp;Li Wai Keung ,&nbsp;Zeeshan Zeeshan ,&nbsp;Yasser A. Ali ,&nbsp;Nadia Sarhan","doi":"10.1016/j.bdr.2024.100465","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the implementation and evaluation of a convolutional neural network (CNN) based image segmentation model using the U-Net architecture for forest image segmentation. The proposed algorithm starts by preprocessing the datasets of satellite images and corresponding masks from a repository source. Data preprocessing involves resizing, normalizing, and splitting the images and masks into training and testing datasets. The U-Net model architecture, comprising encoder and decoder parts with skip connections, is defined and compiled with binary cross-entropy loss and Adam optimizer. Training includes early stopping and checkpoint saving mechanisms to prevent overfitting and retain the best model weights. Evaluation metrics such as Intersection over Union (IoU), Dice coefficient, pixel accuracy, precision, recall, specificity, and F1-score are computed to assess the model's performance. Visualization of results includes comparing predicted segmentation masks with ground truth masks for qualitative analysis. The study emphasizes the importance of training data size in achieving accurate segmentation models and highlights the potential of U-Net architecture for forest image segmentation tasks.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000418","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the implementation and evaluation of a convolutional neural network (CNN) based image segmentation model using the U-Net architecture for forest image segmentation. The proposed algorithm starts by preprocessing the datasets of satellite images and corresponding masks from a repository source. Data preprocessing involves resizing, normalizing, and splitting the images and masks into training and testing datasets. The U-Net model architecture, comprising encoder and decoder parts with skip connections, is defined and compiled with binary cross-entropy loss and Adam optimizer. Training includes early stopping and checkpoint saving mechanisms to prevent overfitting and retain the best model weights. Evaluation metrics such as Intersection over Union (IoU), Dice coefficient, pixel accuracy, precision, recall, specificity, and F1-score are computed to assess the model's performance. Visualization of results includes comparing predicted segmentation masks with ground truth masks for qualitative analysis. The study emphasizes the importance of training data size in achieving accurate segmentation models and highlights the potential of U-Net architecture for forest image segmentation tasks.

利用卷积神经网络 (CNN) 和 U-Net 架构实现农业图像中的作物和杂草精确分割:深度学习方法
本研究介绍了基于卷积神经网络(CNN)的图像分割模型的实现和评估,该模型采用 U-Net 架构,用于森林图像分割。所提出的算法首先要对卫星图像数据集和来自资源库的相应掩码进行预处理。数据预处理包括调整大小、归一化以及将图像和掩码分割成训练数据集和测试数据集。U-Net 模型架构由编码器和解码器两部分组成,采用二进制交叉熵损失和亚当优化器进行定义和编译。训练包括早期停止和检查点保存机制,以防止过度拟合并保留最佳模型权重。为了评估模型的性能,还计算了一些评估指标,如联合交叉(IoU)、骰子系数、像素精度、精确度、召回率、特异性和 F1 分数。结果的可视化包括比较预测的分割掩码和地面实况掩码,以进行定性分析。该研究强调了训练数据量对实现精确分割模型的重要性,并突出了 U-Net 架构在森林图像分割任务中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信