Luigi F. Marques da Luz , Paulo Freitas de Araujo-Filho , Divanilson R. Campelo
{"title":"Multi-stage deep learning-based intrusion detection system for automotive Ethernet networks","authors":"Luigi F. Marques da Luz , Paulo Freitas de Araujo-Filho , Divanilson R. Campelo","doi":"10.1016/j.adhoc.2024.103548","DOIUrl":null,"url":null,"abstract":"<div><p>Modern automobiles are increasing the demand for automotive Ethernet as a high-bandwidth and flexible in-vehicle network technology. However, since Ethernet does not have native support for authentication or encryption, intrusion detection systems (IDSs) are becoming an attractive security mechanism to detect malicious activities that may affect Ethernet-based communication in cars. This paper proposes a novel multi-stage deep learning-based intrusion detection system to detect and classify cyberattacks in automotive Ethernet networks. The first stage uses a Random Forest classifier to detect cyberattacks quickly. The second stage, on the other hand, uses a Pruned Convolutional Neural Network that minimizes false positive rates while classifying different types of cyberattacks. We evaluate our proposed IDS using two publicly available automotive Ethernet intrusion datasets. The experimental results show that our proposed solution detects cyberattacks with a similar detection rate and a faster detection time compared to other state-of-the-art baseline automotive Ethernet IDSs.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524001598","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Modern automobiles are increasing the demand for automotive Ethernet as a high-bandwidth and flexible in-vehicle network technology. However, since Ethernet does not have native support for authentication or encryption, intrusion detection systems (IDSs) are becoming an attractive security mechanism to detect malicious activities that may affect Ethernet-based communication in cars. This paper proposes a novel multi-stage deep learning-based intrusion detection system to detect and classify cyberattacks in automotive Ethernet networks. The first stage uses a Random Forest classifier to detect cyberattacks quickly. The second stage, on the other hand, uses a Pruned Convolutional Neural Network that minimizes false positive rates while classifying different types of cyberattacks. We evaluate our proposed IDS using two publicly available automotive Ethernet intrusion datasets. The experimental results show that our proposed solution detects cyberattacks with a similar detection rate and a faster detection time compared to other state-of-the-art baseline automotive Ethernet IDSs.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.