{"title":"Automatic segmentation of femoral tumors by nnU-net","authors":"Oren Rachmil , Moran Artzi , Moshe Iluz , Ido Druckmann , Zohar Yosibash , Amir Sternheim","doi":"10.1016/j.clinbiomech.2024.106265","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Metastatic femoral tumors may lead to pathological fractures during daily activities. A CT-based finite element analysis of a patient's femurs was shown to assist orthopedic surgeons in making informed decisions about the risk of fracture and the need for a prophylactic fixation. Improving the accuracy of such analyses ruqires an automatic and accurate segmentation of the tumors and their automatic inclusion in the finite element model. We present herein a deep learning algorithm (nnU-Net) to automatically segment lytic tumors within the femur.</p></div><div><h3>Method</h3><p>A dataset consisting of fifty CT scans of patients with manually annotated femoral tumors was created. Forty of them, chosen randomly, were used for training the nnU-Net, while the remaining ten CT scans were used for testing. The deep learning model's performance was compared to two experienced radiologists.</p></div><div><h3>Findings</h3><p>The proposed algorithm outperformed the current state-of-the-art solutions, achieving dice similarity scores of 0.67 and 0.68 on the test data when compared to two experienced radiologists, while the dice similarity score for inter-individual variability between the radiologists was 0.73.</p></div><div><h3>Interpretation</h3><p>The automatic algorithm may segment lytic femoral tumors in CT scans as accurately as experienced radiologists with similar dice similarity scores. The influence of the realistic tumors inclusion in an autonomous finite element algorithm is presented in (Rachmil et al., \"The Influence of Femoral Lytic Tumors Segmentation on Autonomous Finite Element Analyses\", Clinical Biomechanics, 112, paper 106192, (2024)).</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268003324000974","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Metastatic femoral tumors may lead to pathological fractures during daily activities. A CT-based finite element analysis of a patient's femurs was shown to assist orthopedic surgeons in making informed decisions about the risk of fracture and the need for a prophylactic fixation. Improving the accuracy of such analyses ruqires an automatic and accurate segmentation of the tumors and their automatic inclusion in the finite element model. We present herein a deep learning algorithm (nnU-Net) to automatically segment lytic tumors within the femur.
Method
A dataset consisting of fifty CT scans of patients with manually annotated femoral tumors was created. Forty of them, chosen randomly, were used for training the nnU-Net, while the remaining ten CT scans were used for testing. The deep learning model's performance was compared to two experienced radiologists.
Findings
The proposed algorithm outperformed the current state-of-the-art solutions, achieving dice similarity scores of 0.67 and 0.68 on the test data when compared to two experienced radiologists, while the dice similarity score for inter-individual variability between the radiologists was 0.73.
Interpretation
The automatic algorithm may segment lytic femoral tumors in CT scans as accurately as experienced radiologists with similar dice similarity scores. The influence of the realistic tumors inclusion in an autonomous finite element algorithm is presented in (Rachmil et al., "The Influence of Femoral Lytic Tumors Segmentation on Autonomous Finite Element Analyses", Clinical Biomechanics, 112, paper 106192, (2024)).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.