Differentiation of mezcales from four agave species using FT-MIR and multivariate statistical analysis

IF 0.5 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Rosa López Aguilar, Emanuel Hernández Núñez, Arturo Hernández Montes, Holber Zuleta Prada, José Enrique Herbert Pucheta
{"title":"Differentiation of mezcales from four agave species using FT-MIR and multivariate statistical analysis","authors":"Rosa López Aguilar, Emanuel Hernández Núñez, Arturo Hernández Montes, Holber Zuleta Prada, José Enrique Herbert Pucheta","doi":"10.18633/biotecnia.v26.2210","DOIUrl":null,"url":null,"abstract":"Fourier Transform Mid-Infrared (FT-MIR) spectroscopy and multivariate statistical analysis were used to differentiate mezcales elaborated with four agave species. The FT-MIR data matrix was subjected to spectral transformations using first and second derivatives. The Partial Least Squares (PLS)-Discriminant Analysis (DA) with the matrix transformed by the first and second derivative allowed the differentiation of mezcales. While Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) was more robust when it was analyzed with second-derivative data. Pairwise comparisons by OPLS-DA allowed mezcales to be correctly discriminated, mainly between Agave karwinskii and Agave potatorum (Q2 = 0.654 and p – value < 0.01; R2Y = 0.985 and p-value < 0.01) and between Agave angustifolia and Agave karwinskii (Q2 = 0.563 and p-value = 0.01; R2Y = 0.989 and p-value = 0.01). FT-MIR spectrophotometry and the PLS-Regression (PLS-R) were applied to predict the ethanol percentage (% v/v) of mezcales collected in 2022 based on the PLS-R model previously run on samples evaluated in 2021.","PeriodicalId":8876,"journal":{"name":"Biotecnia","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotecnia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18633/biotecnia.v26.2210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fourier Transform Mid-Infrared (FT-MIR) spectroscopy and multivariate statistical analysis were used to differentiate mezcales elaborated with four agave species. The FT-MIR data matrix was subjected to spectral transformations using first and second derivatives. The Partial Least Squares (PLS)-Discriminant Analysis (DA) with the matrix transformed by the first and second derivative allowed the differentiation of mezcales. While Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) was more robust when it was analyzed with second-derivative data. Pairwise comparisons by OPLS-DA allowed mezcales to be correctly discriminated, mainly between Agave karwinskii and Agave potatorum (Q2 = 0.654 and p – value < 0.01; R2Y = 0.985 and p-value < 0.01) and between Agave angustifolia and Agave karwinskii (Q2 = 0.563 and p-value = 0.01; R2Y = 0.989 and p-value = 0.01). FT-MIR spectrophotometry and the PLS-Regression (PLS-R) were applied to predict the ethanol percentage (% v/v) of mezcales collected in 2022 based on the PLS-R model previously run on samples evaluated in 2021.
利用傅立叶变换红外光谱和多元统计分析区分四种龙舌兰中的龙舌兰鳞片
傅立叶变换中红外光谱(FT-MIR)和多元统计分析被用来区分用四种龙舌兰制作的 mezcales。傅立叶变换中红外光谱数据矩阵使用一阶和二阶导数进行光谱变换。使用偏最小二乘法(PLS)-判别分析法(DA)对经过一阶和二阶导数变换的矩阵进行判别,从而区分出不同的龙舌兰。而正交偏最小二乘法-判别分析(OPLS-DA)在使用二次导数数据进行分析时更为稳健。通过 OPLS-DA 进行配对比较,可以正确区分龙舌兰的鳞片,主要是龙舌兰和龙舌兰之间(Q2 = 0.654,p 值 < 0.01;R2Y = 0.985,p 值 < 0.01)以及龙舌兰和龙舌兰之间(Q2 = 0.563,p 值 = 0.01;R2Y = 0.989,p 值 = 0.01)。傅立叶变换红外分光光度法和 PLS-R 回归法(PLS-R)被用于预测 2022 年采集的龙舌兰乙醇百分比(% v/v),该预测是基于之前在 2021 年评估的样品上运行的 PLS-R 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotecnia
Biotecnia BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
自引率
33.30%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信