Effect of filler orientation on mechanical and thermal properties of microwave absorbent 3D printed polycaprolactone/carbonyl iron particle composites

IF 1.9 3区 工程技术 Q3 ENGINEERING, MANUFACTURING
Usharani Rath, P. M. Pandey
{"title":"Effect of filler orientation on mechanical and thermal properties of microwave absorbent 3D printed polycaprolactone/carbonyl iron particle composites","authors":"Usharani Rath, P. M. Pandey","doi":"10.1177/09544054241249226","DOIUrl":null,"url":null,"abstract":"A thorough investigation was conducted in the present work on the mechanical and thermal characteristics of polycaprolactone/carbonyl iron particle composites. For composite fabrication, 3D printing technique was utilized. The fabricated composites were categorized as oriented, non-oriented and polycaprolactone samples based on orientation and concentration of filler particle. To evaluate the effect of orientation of carbonyl iron particle, two orientation directions, viz. parallel orientation, and perpendicular orientation with respect to loading direction were tried. The sample with parallel orientation exhibited the highest tensile strength followed by 90° orientation and pure polycaprolactone samples respectively. Oriented composites exhibited elevated dynamic modulus in comparison to the composites without orientation. The oriented composites demonstrated stiffness and tensile strength in the order of 13.66 ± 0.94 MPa and 3.79 ± 0.26 MPa respectively. The proposed methodology in the present study can be used to align carbonyl iron fillers in polymer matrix to tailor the mechanical, viscoelastic, and degradation properties.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241249226","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

A thorough investigation was conducted in the present work on the mechanical and thermal characteristics of polycaprolactone/carbonyl iron particle composites. For composite fabrication, 3D printing technique was utilized. The fabricated composites were categorized as oriented, non-oriented and polycaprolactone samples based on orientation and concentration of filler particle. To evaluate the effect of orientation of carbonyl iron particle, two orientation directions, viz. parallel orientation, and perpendicular orientation with respect to loading direction were tried. The sample with parallel orientation exhibited the highest tensile strength followed by 90° orientation and pure polycaprolactone samples respectively. Oriented composites exhibited elevated dynamic modulus in comparison to the composites without orientation. The oriented composites demonstrated stiffness and tensile strength in the order of 13.66 ± 0.94 MPa and 3.79 ± 0.26 MPa respectively. The proposed methodology in the present study can be used to align carbonyl iron fillers in polymer matrix to tailor the mechanical, viscoelastic, and degradation properties.
填料取向对微波吸收三维打印聚己内酯/羰基铁颗粒复合材料机械性能和热性能的影响
本研究对聚己内酯/羰基铁颗粒复合材料的机械和热特性进行了深入研究。复合材料的制造采用了三维打印技术。根据填料颗粒的取向和浓度,将制成的复合材料分为取向、无取向和聚己内酯样品。为了评估羰基铁颗粒取向的影响,尝试了两个取向方向,即相对于加载方向的平行取向和垂直取向。平行取向样品的拉伸强度最高,其次分别是 90° 取向和纯聚己内酯样品。与未取向的复合材料相比,取向复合材料的动态模量更高。定向复合材料的刚度和拉伸强度分别为 13.66 ± 0.94 兆帕和 3.79 ± 0.26 兆帕。本研究中提出的方法可用于调整聚合物基体中的羰基铁填料,以定制其机械、粘弹性和降解性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
30.80%
发文量
167
审稿时长
5.1 months
期刊介绍: Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed. Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing. Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信